Cargando…
Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium
Bacteriophages of freshwater environments have not been well studied despite their numerical dominance and ecological importance. Currently, very few phages have been isolated for many abundant freshwater bacterial groups, especially for the family Comamonadaceae that is found ubiquitously in freshw...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964084/ https://www.ncbi.nlm.nih.gov/pubmed/29789681 http://dx.doi.org/10.1038/s41598-018-26363-y |
Sumario: | Bacteriophages of freshwater environments have not been well studied despite their numerical dominance and ecological importance. Currently, very few phages have been isolated for many abundant freshwater bacterial groups, especially for the family Comamonadaceae that is found ubiquitously in freshwater habitats. In this study, we report two novel phages, P26059A and P26059B, that were isolated from Lake Soyang in South Korea, and lytically infected bacterial strain IMCC26059, a member of the family Comamonadaceae. Morphological observations revealed that phages P26059A and P26059B belonged to the family Siphoviridae and Podoviridae, respectively. Of 12 bacterial strains tested, the two phages infected strain IMCC26059 only, showing a very narrow host range. The genomes of the two phages were different in length and highly distinct from each other with little sequence similarity. A comparison of the phage genome sequences and freshwater viral metagenomes showed that the phage populations represented by P26059A and P26059B exist in the environment with different distribution patterns. Presence of the phages in Lake Soyang and Lake Michigan also indicated a consistent lytic infection of the Comamonadaceae bacterium, which might control the population size of this bacterial group. Taken together, although the two phages shared a host strain, they showed completely distinctive characteristics from each other in morphological, genomic, and ecological analyses. Considering the abundance of the family Comamonadaceae in freshwater habitats and the rarity of phage isolates infecting this family, the two phages and their genomes in this study would be valuable resources for freshwater virus research. |
---|