Cargando…
Infused ice can multiply IceCube’s sensitivity
The IceCube Neutrino Observatory is the world’s largest neutrino detector with a cubic-kilometer instrumented volume at the South Pole. It is preparing for a major upgrade that will significantly increase its sensitivity. A promising technological innovation investigated for this upgrade is waveleng...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964321/ https://www.ncbi.nlm.nih.gov/pubmed/29581488 http://dx.doi.org/10.1038/s41467-018-03693-z |
Sumario: | The IceCube Neutrino Observatory is the world’s largest neutrino detector with a cubic-kilometer instrumented volume at the South Pole. It is preparing for a major upgrade that will significantly increase its sensitivity. A promising technological innovation investigated for this upgrade is wavelength shifting optics. Augmenting sensors with such optics could increase the photo-collection area of IceCube’s digital optical modules, and shift the incoming photons’ wavelength to where these modules are the most sensitive. Here we investigate the use of IceCube’s drill holes as wavelength shifting optics. We calculate the sensitivity enhancement due to increasing the ice’s refractive index in the holes, and infusing wavelength-shifting substrate into the ice. We find that, with adequate wavelength-shifter infusion, every ~0.05 increase in the ice’s refractive index will increase IceCube’s photon sensitivity by 100%, opening the possibility for the substantial, cost-effective expansion of IceCube’s reach. |
---|