Cargando…

A self-reporting AIE probe with a built-in singlet oxygen sensor for targeted photodynamic ablation of cancer cells

The real-time monitoring of reactive oxygen species (ROS, particularly singlet oxygen) generation during photodynamic therapy is a great challenge due to the extremely short half-life and small radius of action. To tackle this issue, we herein report a bioprobe composed of a red emissive photosensit...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Youyong, Zhang, Chong-Jing, Xu, Shidang, Liu, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Royal Society of Chemistry 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5965248/
https://www.ncbi.nlm.nih.gov/pubmed/29899908
http://dx.doi.org/10.1039/c5sc03583j
Descripción
Sumario:The real-time monitoring of reactive oxygen species (ROS, particularly singlet oxygen) generation during photodynamic therapy is a great challenge due to the extremely short half-life and small radius of action. To tackle this issue, we herein report a bioprobe composed of a red emissive photosensitizer (PS) with aggregation-induced emission (AIE) characteristics and a fluorogenic green emissive rhodol dye conjugated via a singlet oxygen cleavable aminoacrylate (AA) linker. The probe emits red fluorescence in water, and the red emissive PS can be used for probe self-tracking. Upon image-guided light irradiation, the generated singlet oxygen cleaves the AA linker to yield green fluorescence turn-on of rhodol, which offers real-time and in situ monitoring of singlet oxygen generation during photodynamic ablation of cancer cells, providing a strategy for the early evaluation of the therapeutic effect.