Cargando…
Machine learning reveals cyclic changes in seismic source spectra in Geysers geothermal field
The earthquake rupture process comprises complex interactions of stress, fracture, and frictional properties. New machine learning methods demonstrate great potential to reveal patterns in time-dependent spectral properties of seismic signals and enable identification of changes in faulting processe...
Autores principales: | Holtzman, Benjamin K., Paté, Arthur, Paisley, John, Waldhauser, Felix, Repetto, Douglas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966224/ https://www.ncbi.nlm.nih.gov/pubmed/29806015 http://dx.doi.org/10.1126/sciadv.aao2929 |
Ejemplares similares
-
Spatial and temporal multiplet analysis for identification of dominant fluid migration path at The Geysers geothermal field, California
por: Staszek, M., et al.
Publicado: (2021) -
Determination of permeability data and 3-D modelling of the host rock and sinters from a geothermal field: Los Geysers, northern Trans-Mexican Volcanic Field
por: Elabd, Mohamed Ali, et al.
Publicado: (2022) -
The 2018 reawakening and eruption dynamics of Steamboat Geyser, the world’s tallest active geyser
por: Reed, Mara H., et al.
Publicado: (2021) -
Sonographic Presentation of the Geyser Sign
por: Gilani, Syed Amir, et al.
Publicado: (2019) -
Discovering geothermal supercritical fluids: a new frontier for seismic exploration
por: Piana Agostinetti, Nicola, et al.
Publicado: (2017)