Cargando…
Putting hands to rest: efficient deep CNN-RNN architecture for chemical named entity recognition with no hand-crafted rules
Chemical named entity recognition (NER) is an active field of research in biomedical natural language processing. To facilitate the development of new and superior chemical NER systems, BioCreative released the CHEMDNER corpus, an extensive dataset of diverse manually annotated chemical entities. Mo...
Autores principales: | Korvigo, Ilia, Holmatov, Maxim, Zaikovskii, Anatolii, Skoblov, Mikhail |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966369/ https://www.ncbi.nlm.nih.gov/pubmed/29796778 http://dx.doi.org/10.1186/s13321-018-0280-0 |
Ejemplares similares
-
Long short-term memory RNN for biomedical named entity recognition
por: Lyu, Chen, et al.
Publicado: (2017) -
Monitoring named entity recognition: the League Table
por: Rebholz-Schuhmann, Dietrich, et al.
Publicado: (2013) -
Design, implementation, and operation of a rapid, robust named entity recognition web service
por: Pletscher-Frankild, Sune, et al.
Publicado: (2019) -
A CNN-RNN Framework for Crop Yield Prediction
por: Khaki, Saeed, et al.
Publicado: (2020) -
Comparative Analysis of CNN and RNN for Voice Pathology Detection
por: Syed, Sidra Abid, et al.
Publicado: (2021)