Cargando…
Ancient acquisition of “alginate utilization loci” by human gut microbiota
In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966431/ https://www.ncbi.nlm.nih.gov/pubmed/29795267 http://dx.doi.org/10.1038/s41598-018-26104-1 |
_version_ | 1783325456084238336 |
---|---|
author | Mathieu, Sophie Touvrey-Loiodice, Mélanie Poulet, Laurent Drouillard, Sophie Vincentelli, Renaud Henrissat, Bernard Skjåk-Bræk, Gudmund Helbert, William |
author_facet | Mathieu, Sophie Touvrey-Loiodice, Mélanie Poulet, Laurent Drouillard, Sophie Vincentelli, Renaud Henrissat, Bernard Skjåk-Bræk, Gudmund Helbert, William |
author_sort | Mathieu, Sophie |
collection | PubMed |
description | In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow. |
format | Online Article Text |
id | pubmed-5966431 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-59664312018-05-24 Ancient acquisition of “alginate utilization loci” by human gut microbiota Mathieu, Sophie Touvrey-Loiodice, Mélanie Poulet, Laurent Drouillard, Sophie Vincentelli, Renaud Henrissat, Bernard Skjåk-Bræk, Gudmund Helbert, William Sci Rep Article In bacteria from the phylum Bacteroidetes, the genes coding for enzymes involved in polysaccharide degradation are often colocalized and coregulated in so-called “polysaccharide utilization loci” (PULs). PULs dedicated to the degradation of marine polysaccharides (e.g. laminaran, ulvan, alginate and porphyran) have been characterized in marine bacteria. Interestingly, the gut microbiome of Japanese individuals acquired, by lateral transfer from marine bacteria, the genes involved in the breakdown of porphyran, the cell wall polysaccharide of the red seaweed used in maki. Sequence similarity analyses predict that the human gut microbiome also encodes enzymes for the degradation of alginate, the main cell wall polysaccharide of brown algae. We undertook the functional characterization of diverse polysaccharide lyases from family PL17, frequently found in marine bacteria as well as those of human gut bacteria. We demonstrate here that this family is polyspecific. Our phylogenetic analysis of family PL17 reveals that all alginate lyases, which have all the same specificity and mode of action, cluster together in a very distinct subfamily. The alginate lyases found in human gut bacteria group together in a single clade which is rooted deeply in the PL17 tree. These enzymes were found in PULs containing PL6 enzymes, which also clustered together in the phylogenetic tree of PL6. Together, biochemical and bioinformatics analyses suggest that acquisition of this system appears ancient and, because only traces of two successful transfers were detected upon inspection of PL6 and PL17 families, the pace of acquisition of marine polysaccharide degradation system is probably very slow. Nature Publishing Group UK 2018-05-23 /pmc/articles/PMC5966431/ /pubmed/29795267 http://dx.doi.org/10.1038/s41598-018-26104-1 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Mathieu, Sophie Touvrey-Loiodice, Mélanie Poulet, Laurent Drouillard, Sophie Vincentelli, Renaud Henrissat, Bernard Skjåk-Bræk, Gudmund Helbert, William Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title | Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title_full | Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title_fullStr | Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title_full_unstemmed | Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title_short | Ancient acquisition of “alginate utilization loci” by human gut microbiota |
title_sort | ancient acquisition of “alginate utilization loci” by human gut microbiota |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966431/ https://www.ncbi.nlm.nih.gov/pubmed/29795267 http://dx.doi.org/10.1038/s41598-018-26104-1 |
work_keys_str_mv | AT mathieusophie ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT touvreyloiodicemelanie ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT pouletlaurent ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT drouillardsophie ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT vincentellirenaud ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT henrissatbernard ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT skjakbrækgudmund ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota AT helbertwilliam ancientacquisitionofalginateutilizationlocibyhumangutmicrobiota |