Cargando…
Silicon-oriented regio- and enantioselective rhodium-catalyzed hydroformylation
Hydroformylation of 1,2-disubstituted alkenes usually occurs at the α position of the directing heteroatom such as oxygen atom and nitrogen atom. By contrast, to achieve hydroformylation on the β position of the heteroatom is a tough task. Herein, we report the asymmetric rhodium-catalyzed hydroform...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966446/ https://www.ncbi.nlm.nih.gov/pubmed/29795178 http://dx.doi.org/10.1038/s41467-018-04277-7 |
Sumario: | Hydroformylation of 1,2-disubstituted alkenes usually occurs at the α position of the directing heteroatom such as oxygen atom and nitrogen atom. By contrast, to achieve hydroformylation on the β position of the heteroatom is a tough task. Herein, we report the asymmetric rhodium-catalyzed hydroformylation of 1,2-disubstituted alkenylsilanes with excellent regioselectivity at the β position (relative to the silicon heteroatom) and enantioselectivity. In a synthetic sense, we achieve the asymmetric hydroformylation on the β position of the oxygen atom indirectly by using the silicon group as a surrogate for the hydroxyl. Density functional theory (DFT) calculations are carried out to examine energetics of the whole reaction path for Rh/YanPhos-catalyzed asymmetric hydroformylation and understand its regioselectivity and enantioselectivity. Our computational study suggests that the silicon group can activate the substrate and is critical for the regioselectivity. |
---|