Cargando…
Genetics of fasting and postprandial metabolite levels are overlapping
In 2015, a genome-wide association study described 59 independent signals that showed strong associations with 85 fasting metabolite concentrations as measured by the Biocrates AbsoluteIDQ p150 kit. However, the human body resides in a nonfasting state for the greater part of the day, and the geneti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Physiological Society
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966804/ https://www.ncbi.nlm.nih.gov/pubmed/29373077 http://dx.doi.org/10.1152/physiolgenomics.00101.2017 |
Sumario: | In 2015, a genome-wide association study described 59 independent signals that showed strong associations with 85 fasting metabolite concentrations as measured by the Biocrates AbsoluteIDQ p150 kit. However, the human body resides in a nonfasting state for the greater part of the day, and the genetic basis of postprandial metabolite concentrations remains largely unknown. We systematically examined these previously identified genetic associations in postprandial metabolite concentrations after a mixed meal. Of these 85 metabolites, 23 were identified with significant changes after the meal, for which 38 gene-metabolite associations were analyzed. Of these 38 associations, 31 gene-metabolite associations were replicated with postprandial metabolite concentrations. These data indicate that the genetics of fasting and postprandial metabolite levels are significantly overlapping. |
---|