Cargando…

A highly secure method for rearing Aedes aegypti mosquitoes

BACKGROUND: Vector-borne infectious diseases are caused by pathogenic microorganisms transmitted mainly by blood-sucking arthropod vectors. In laboratories, the handling of insects carrying human pathogens requires extra caution because of safety concerns over their escape risk. Based on standard in...

Descripción completa

Detalles Bibliográficos
Autores principales: Ote, Manabu, Kanuka, Hirotaka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966851/
https://www.ncbi.nlm.nih.gov/pubmed/29849477
http://dx.doi.org/10.1186/s41182-018-0098-5
Descripción
Sumario:BACKGROUND: Vector-borne infectious diseases are caused by pathogenic microorganisms transmitted mainly by blood-sucking arthropod vectors. In laboratories, the handling of insects carrying human pathogens requires extra caution because of safety concerns over their escape risk. Based on standard insect containment practices, there have been cases where costly enhancements were required to definitely protect laboratory workers and neighbors from potential infection through mosquito bites. Here, we developed a mosquito rearing method that provides a reliable and cost-effective means to securely contain pathogen-infected females of the yellow fever mosquito Aedes aegypti. RESULTS: To debilitate the motility of A. aegypti females, mosquitoes were rendered completely flightless by ablation of either wing. The “single-winged” mosquitoes exhibited a severe defect in flying ability and were incubated in a container with inside surfaces covered with a net stretched to approximately 1-mm mesh, which helped the mosquitoes hold on and climb up the wall. In this container, flightless females consistently showed similar blood feeding and egg laying activities to intact females. Eighty-five percent of the flightless mosquitoes survived at 1 week after wing ablation, ensuring feasibility of the use of these mosquitoes for studying pathogen dynamics. CONCLUSIONS: This mosquito rearing method, with a detailed protocol, is presented here and can be readily implemented as a highly secure insectary for vectors carrying human pathogens. For researchers in an environment where highly strict containment practices are mandatory, this method could offer appropriate opportunities to perform research on pathogen–mosquito interactions in vivo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s41182-018-0098-5) contains supplementary material, which is available to authorized users.