Cargando…
Tracking antibiotic resistance gene pollution from different sources using machine-learning classification
BACKGROUND: Antimicrobial resistance (AMR) has been a worldwide public health concern. Current widespread AMR pollution has posed a big challenge in accurately disentangling source-sink relationship, which has been further confounded by point and non-point sources, as well as endogenous and exogenou...
Autores principales: | Li, Li-Guan, Yin, Xiaole, Zhang, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966912/ https://www.ncbi.nlm.nih.gov/pubmed/29793542 http://dx.doi.org/10.1186/s40168-018-0480-x |
Ejemplares similares
-
Tracking Major Sources of Water Contamination Using Machine Learning
por: Wu, Jianyong, et al.
Publicado: (2021) -
Machine learning for groundwater pollution source identification and monitoring network optimization
por: Kontos, Yiannis N., et al.
Publicado: (2022) -
Applying Machine Learning Algorithms for the Classification of Mink Infected with Aleutian Disease Using Different Data Sources
por: Do, Duy Ngoc, et al.
Publicado: (2022) -
Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants
por: Li, An-Dong, et al.
Publicado: (2015) -
Machine-Learning Classification of a Number of Contaminant Sources in an Urban Water Network
por: Lučin, Ivana, et al.
Publicado: (2021)