Cargando…

The Role of the Sucrose-Responsive IR60b Neuron for Drosophila melanogaster: A Hypothesis

In a recent paper, Joseph and colleagues (Joseph et al. 2017) have characterized an IR60b receptor-expressing neuron in Drosophila. They showed that it responds to sucrose and serves to limit sucrose consumption, and proposed that it may thereby act to prevent overfeeding. Here, we propose an altern...

Descripción completa

Detalles Bibliográficos
Autores principales: Szyszka, Paul, Galizia, C Giovanni
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967455/
https://www.ncbi.nlm.nih.gov/pubmed/29546407
http://dx.doi.org/10.1093/chemse/bjy020
Descripción
Sumario:In a recent paper, Joseph and colleagues (Joseph et al. 2017) have characterized an IR60b receptor-expressing neuron in Drosophila. They showed that it responds to sucrose and serves to limit sucrose consumption, and proposed that it may thereby act to prevent overfeeding. Here, we propose an alternative hypothesis for the functional role of sucrose feeding control, and for how this limitation of sucrose uptake is accomplished. Adult fruit flies feed by excreting saliva onto the food, and imbibing the predigested liquefied food, or by filling the crop, where the food is predigested. Enzymes in the saliva hydrolyze starch and disaccharides into absorbable monosaccharides. Premature ingestion into the midgut would not give the enzymes in the saliva enough time to predigest the food. Thus, IR60b neurons might serve as a sensor to monitor the digestive state of external food or crop content: when disaccharides (sucrose) concentration is high, ingestion to the gut is inhibited, keeping a low concentration of starch and disaccharides in the midgut.