Cargando…

SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast

BACKGROUND: Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2A(Cdc55) phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2A(Cdc55) substrates hav...

Descripción completa

Detalles Bibliográficos
Autores principales: Baro, Barbara, Játiva, Soraya, Calabria, Inés, Vinaixa, Judith, Bech-Serra, Joan-Josep, de LaTorre, Carolina, Rodrigues, João, Hernáez, María Luisa, Gil, Concha, Barceló-Batllori, Silvia, Larsen, Martin R, Queralt, Ethel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967524/
https://www.ncbi.nlm.nih.gov/pubmed/29688323
http://dx.doi.org/10.1093/gigascience/giy047
Descripción
Sumario:BACKGROUND: Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2A(Cdc55) phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2A(Cdc55) substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2A(Cdc55) phosphatase and new PP2A-related processes in mitotic arrested cells. RESULTS: We identified 62 statistically significant PP2A(Cdc55) substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2A(Cdc55) substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84–90, thus highlighting the relevance of these aminoacids for substrate interaction. CONCLUSIONS: We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2A(Cdc55) substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases’ consensus motifs were also enriched in our dataset, suggesting that PP2A(Cdc55) counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2A(Cdc55) regulation, highlighting a major role of PP2A(Cdc55) in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2A(Cdc55)-dependent phosphoproteome.