Cargando…
Predicting opioid receptor binding affinity of pharmacologically unclassified designer substances using molecular docking
Opioids represent a highly-abused and highly potent class of drugs that have become a significant threat to public safety. Often there are little to no pharmacological and toxicological data available for new, illicitly used and abused opioids, and this has resulted in a growing number of serious ad...
Autores principales: | Ellis, Christopher R., Kruhlak, Naomi L., Kim, Marlene T., Hawkins, Edward G., Stavitskaya, Lidiya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967713/ https://www.ncbi.nlm.nih.gov/pubmed/29795628 http://dx.doi.org/10.1371/journal.pone.0197734 |
Ejemplares similares
-
Assessing the Structural and Pharmacological Similarity of Newly Identified Drugs of Abuse to Controlled Substances Using Public Health Assessment via Structural Evaluation
por: Ellis, Christopher R., et al.
Publicado: (2019) -
Structure-Based Approach for the Prediction of Mu-opioid Binding Affinity of Unclassified Designer Fentanyl-Like Molecules
por: Floresta, Giuseppe, et al.
Publicado: (2019) -
Evaluating kratom alkaloids using PHASE
por: Ellis, Christopher R., et al.
Publicado: (2020) -
Structure-Kinetics Relationships of Opioids from Metadynamics and Machine Learning
por: Mahinthichaichan, Paween, et al.
Publicado: (2023) -
Binding Affinity via Docking: Fact and Fiction
por: Pantsar, Tatu, et al.
Publicado: (2018)