Cargando…
Incremental fuzzy C medoids clustering of time series data using dynamic time warping distance
Clustering time series data is of great significance since it could extract meaningful statistics and other characteristics. Especially in biomedical engineering, outstanding clustering algorithms for time series may help improve the health level of people. Considering data scale and time shifts of...
Autores principales: | Liu, Yongli, Chen, Jingli, Wu, Shuai, Liu, Zhizhong, Chao, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5967819/ https://www.ncbi.nlm.nih.gov/pubmed/29795600 http://dx.doi.org/10.1371/journal.pone.0197499 |
Ejemplares similares
-
A Fast Weighted Fuzzy C-Medoids Clustering for Time Series Data Based on P-Splines
por: Xu, Jiucheng, et al.
Publicado: (2022) -
A fuzzy co-clustering algorithm for biomedical data
por: Liu, Yongli, et al.
Publicado: (2017) -
Searching and Mining Trillions of Time Series Subsequences under Dynamic Time Warping
por: Rakthanmanon, Thanawin, et al.
Publicado: (2012) -
Clustering of Bacterial Growth Dynamics in Response to Growth Media by Dynamic Time Warping
por: Cao, Yang-Yang, et al.
Publicado: (2020) -
Time warps
por: Gribbin, John
Publicado: (1979)