Cargando…
Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering
The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968190/ https://www.ncbi.nlm.nih.gov/pubmed/28931727 http://dx.doi.org/10.1042/BSR20170804 |
_version_ | 1783325724452585472 |
---|---|
author | Xu, Bin Wang, Rui Wang, Hao Xu, Hong-Gang |
author_facet | Xu, Bin Wang, Rui Wang, Hao Xu, Hong-Gang |
author_sort | Xu, Bin |
collection | PubMed |
description | The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4th, 8th, and 12th week, samples from all groups were collected for hematoxylin–eosin (HE) staining and streptavidin–peroxidase (SP) method. The morphological analysis software was used to calculate the average absorbance value (A value). SP and flow cytometry demonstrated that BMSCs were induced into chondrocytes. DBM scaffold showed honeycomb-shaped porous and three-dimensional structure, while the surface pores are interlinked with the deep pores. At the 4th week, in the blank control group, DBM scaffold structure was clear, and cells analogous to chondrocytes were scattered in the interior of DBM scaffolds. At the 8(th) week, in the in vivo group, there were a large amount of cells, mainly mature chondrocytes, and the DBM scaffolds were partially absorbed. At the 12th week, in the in vitro group, the interior of scaffolds was filled up with chondrocytes with partial fibrosis, but arranged in disorder. In the in vivo group, the chondrocytes completely infiltrated into the interior of scaffolds and were arranged in certain stress direction. The in vivo group showed higher A value than the in vitro and blank control groups at each time point. Allogenic DBM combined BMSCs in the knee joint cavity of rabbits could provide better tissue-engineered cartilage than that cultivated in vitro. |
format | Online Article Text |
id | pubmed-5968190 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59681902018-06-12 Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering Xu, Bin Wang, Rui Wang, Hao Xu, Hong-Gang Biosci Rep Research Articles The present study aims to assess coculture of allogenic decalcified bone matrix (DBM) and bone marrow mesenchymal stem cells (BMSCs) in the knee joint cavity of rabbits for cartilage tissue engineering. Rabbits were assigned to an in vitro group, an in vivo group, and a blank control group. At the 4th, 8th, and 12th week, samples from all groups were collected for hematoxylin–eosin (HE) staining and streptavidin–peroxidase (SP) method. The morphological analysis software was used to calculate the average absorbance value (A value). SP and flow cytometry demonstrated that BMSCs were induced into chondrocytes. DBM scaffold showed honeycomb-shaped porous and three-dimensional structure, while the surface pores are interlinked with the deep pores. At the 4th week, in the blank control group, DBM scaffold structure was clear, and cells analogous to chondrocytes were scattered in the interior of DBM scaffolds. At the 8(th) week, in the in vivo group, there were a large amount of cells, mainly mature chondrocytes, and the DBM scaffolds were partially absorbed. At the 12th week, in the in vitro group, the interior of scaffolds was filled up with chondrocytes with partial fibrosis, but arranged in disorder. In the in vivo group, the chondrocytes completely infiltrated into the interior of scaffolds and were arranged in certain stress direction. The in vivo group showed higher A value than the in vitro and blank control groups at each time point. Allogenic DBM combined BMSCs in the knee joint cavity of rabbits could provide better tissue-engineered cartilage than that cultivated in vitro. Portland Press Ltd. 2017-11-09 /pmc/articles/PMC5968190/ /pubmed/28931727 http://dx.doi.org/10.1042/BSR20170804 Text en © 2017 The Author(s). http://creativecommons.org/licenses/by/4.0/This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Articles Xu, Bin Wang, Rui Wang, Hao Xu, Hong-Gang Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title | Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title_full | Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title_fullStr | Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title_full_unstemmed | Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title_short | Coculture of allogenic DBM and BMSCs in the knee joint cavity of rabbits for cartilage tissue engineering |
title_sort | coculture of allogenic dbm and bmscs in the knee joint cavity of rabbits for cartilage tissue engineering |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968190/ https://www.ncbi.nlm.nih.gov/pubmed/28931727 http://dx.doi.org/10.1042/BSR20170804 |
work_keys_str_mv | AT xubin cocultureofallogenicdbmandbmscsinthekneejointcavityofrabbitsforcartilagetissueengineering AT wangrui cocultureofallogenicdbmandbmscsinthekneejointcavityofrabbitsforcartilagetissueengineering AT wanghao cocultureofallogenicdbmandbmscsinthekneejointcavityofrabbitsforcartilagetissueengineering AT xuhonggang cocultureofallogenicdbmandbmscsinthekneejointcavityofrabbitsforcartilagetissueengineering |