Cargando…
Application of an artificial neural network model for diagnosing type 2 diabetes mellitus and determining the relative importance of risk factors
OBJECTIVES: To identify the most important demographic risk factors for a diagnosis of type 2 diabetes mellitus (T2DM) using a neural network model. METHODS: This study was conducted on a sample of 234 individuals, in whom T2DM was diagnosed using hemoglobin A1c levels. A multilayer perceptron artif...
Autores principales: | Borzouei, Shiva, Soltanian, Ali Reza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Society of Epidemiology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5968209/ https://www.ncbi.nlm.nih.gov/pubmed/29529860 http://dx.doi.org/10.4178/epih.e2018007 |
Ejemplares similares
-
Public Awareness of Early and Late Complications of Type 2 Diabetes - Application of Latent Profile Analysis in Determining Questionnaire Cut-Off Points
por: Shirmohammadi, Nasrin, et al.
Publicado: (2018) -
A Nonparametric Bootstrap Confidence Interval for the Prevalence of Undiagnosed Type 2 Diabetes Mellitus in Hamadan, West of Iran
por: Azizi, Elham, et al.
Publicado: (2018) -
Diagnosing thyroid disorders: Comparison of logistic regression and neural network models
por: Borzouei, Shiva, et al.
Publicado: (2020) -
Identifying associations between health services operational factors and health experience for patients with type 2 diabetes in Iran
por: Mahdavi, Mahdi, et al.
Publicado: (2021) -
Impact of Coronavirus Disease 2019 Outbreak on Children and Adolescents with Type 1 Diabetes Mellitus
por: Hasan Tehrani, Tayebeh, et al.
Publicado: (2021)