Cargando…

Robust 3D point cloud registration based on bidirectional Maximum Correntropy Criterion

This paper presents a robust 3D point cloud registration algorithm based on bidirectional Maximum Correntropy Criterion (MCC). Comparing with traditional registration algorithm based on the mean square error (MSE), using the MCC is superior in dealing with complex registration problem with non-Gauss...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xuetao, Jian, Libo, Xu, Meifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5969772/
https://www.ncbi.nlm.nih.gov/pubmed/29799864
http://dx.doi.org/10.1371/journal.pone.0197542
Descripción
Sumario:This paper presents a robust 3D point cloud registration algorithm based on bidirectional Maximum Correntropy Criterion (MCC). Comparing with traditional registration algorithm based on the mean square error (MSE), using the MCC is superior in dealing with complex registration problem with non-Gaussian noise and large outliers. Since the MCC is considered as a probability measure which weights the corresponding points for registration, the noisy points are penalized. Moreover, we propose to use bidirectional measures which can maximum the overlapping parts and avoid the registration result being trapped into a local minimum. Both of these strategies can better apply the information theory method to the point cloud registration problem, making the algorithm more robust. In the process of implementation, we integrate the fixed-point optimization technique based on the iterative closest point algorithm, resulting in the correspondence and transformation parameters that are solved iteratively. The comparison experiments under noisy conditions with related algorithms have demonstrated good performance of the proposed algorithm.