Cargando…

Dual modulation on glial cells by tetrahydroxystilbene glucoside protects against dopamine neuronal loss

BACKGROUND: Microglia-mediated neuroinflammation is recognized to mainly contribute to the pathogenesis of Parkinson’s disease (PD). Tetrahydroxystilbene glucoside (TSG) has been proved to be beneficial for health with a great number of pharmacological properties. We examined the effects of TSG agai...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yanzhen, Wang, Guoqing, Li, Daidi, Wang, Yanying, Wu, Qin, Shi, Jingshan, Zhang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5970496/
https://www.ncbi.nlm.nih.gov/pubmed/29801454
http://dx.doi.org/10.1186/s12974-018-1194-5
Descripción
Sumario:BACKGROUND: Microglia-mediated neuroinflammation is recognized to mainly contribute to the pathogenesis of Parkinson’s disease (PD). Tetrahydroxystilbene glucoside (TSG) has been proved to be beneficial for health with a great number of pharmacological properties. We examined the effects of TSG against dopamine (DA) neuronal loss towards development of a PD treatment strategy. METHODS: Substantia nigral stereotaxic single injection of lipopolysaccharide (LPS)-induced rat DA neuronal damage was employed to investigate TSG-produced neuroprotection. In addition, primary rat midbrain neuron-glia co-cultures were performed to explore the underlying mechanisms. RESULTS: Daily intraperitoneal injection of TSG for seven consecutive days significantly attenuated LPS-induced loss of DA neurons in the substantia nigra. In addition, glia-dependent mechanisms were responsible for TSG-mediated neuroprotection. First, TSG ameliorated microglia-mediated neuroinflammation and the subsequent production of various pro-inflammatory and neurotoxic factors. Second, astroglial neurotrophic factor neutralization weakened TSG-mediated neuroprotection, showing that TSG was protective in part via increasing astroglia-derived neurotrophic factor secretion. CONCLUSIONS: TSG protects DA neurons against LPS-induced neurotoxicity through dual modulation on glial cells by attenuating microglia-mediated neuroinflammation and enhancing astroglia-derived neurotrophic effects. These findings might open new alternative avenues for PD treatment.