Cargando…

Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization

This paper presents a variant of multiscale quantum harmonic oscillator algorithm for multimodal optimization named MQHOA-MMO. MQHOA-MMO has only two main iterative processes: quantum harmonic oscillator process and multiscale process. In the two iterations, MQHOA-MMO only does one thing: sampling a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Peng, Cheng, Kun, Huang, Yan, Li, Bo, Ye, Xinggui, Chen, Xiuhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971293/
https://www.ncbi.nlm.nih.gov/pubmed/29861714
http://dx.doi.org/10.1155/2018/8430175
Descripción
Sumario:This paper presents a variant of multiscale quantum harmonic oscillator algorithm for multimodal optimization named MQHOA-MMO. MQHOA-MMO has only two main iterative processes: quantum harmonic oscillator process and multiscale process. In the two iterations, MQHOA-MMO only does one thing: sampling according to the wave function at different scales. A set of benchmark test functions including some challenging functions are used to test the performance of MQHOA-MMO. Experimental results demonstrate good performance of MQHOA-MMO in solving multimodal function optimization problems. For the 12 test functions, all of the global peaks can be found without being trapped in a local optimum, and MQHOA-MMO converges within 10 iterations.