Cargando…

Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization

This paper presents a variant of multiscale quantum harmonic oscillator algorithm for multimodal optimization named MQHOA-MMO. MQHOA-MMO has only two main iterative processes: quantum harmonic oscillator process and multiscale process. In the two iterations, MQHOA-MMO only does one thing: sampling a...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Peng, Cheng, Kun, Huang, Yan, Li, Bo, Ye, Xinggui, Chen, Xiuhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971293/
https://www.ncbi.nlm.nih.gov/pubmed/29861714
http://dx.doi.org/10.1155/2018/8430175
_version_ 1783326259970834432
author Wang, Peng
Cheng, Kun
Huang, Yan
Li, Bo
Ye, Xinggui
Chen, Xiuhong
author_facet Wang, Peng
Cheng, Kun
Huang, Yan
Li, Bo
Ye, Xinggui
Chen, Xiuhong
author_sort Wang, Peng
collection PubMed
description This paper presents a variant of multiscale quantum harmonic oscillator algorithm for multimodal optimization named MQHOA-MMO. MQHOA-MMO has only two main iterative processes: quantum harmonic oscillator process and multiscale process. In the two iterations, MQHOA-MMO only does one thing: sampling according to the wave function at different scales. A set of benchmark test functions including some challenging functions are used to test the performance of MQHOA-MMO. Experimental results demonstrate good performance of MQHOA-MMO in solving multimodal function optimization problems. For the 12 test functions, all of the global peaks can be found without being trapped in a local optimum, and MQHOA-MMO converges within 10 iterations.
format Online
Article
Text
id pubmed-5971293
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-59712932018-06-03 Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization Wang, Peng Cheng, Kun Huang, Yan Li, Bo Ye, Xinggui Chen, Xiuhong Comput Intell Neurosci Research Article This paper presents a variant of multiscale quantum harmonic oscillator algorithm for multimodal optimization named MQHOA-MMO. MQHOA-MMO has only two main iterative processes: quantum harmonic oscillator process and multiscale process. In the two iterations, MQHOA-MMO only does one thing: sampling according to the wave function at different scales. A set of benchmark test functions including some challenging functions are used to test the performance of MQHOA-MMO. Experimental results demonstrate good performance of MQHOA-MMO in solving multimodal function optimization problems. For the 12 test functions, all of the global peaks can be found without being trapped in a local optimum, and MQHOA-MMO converges within 10 iterations. Hindawi 2018-05-13 /pmc/articles/PMC5971293/ /pubmed/29861714 http://dx.doi.org/10.1155/2018/8430175 Text en Copyright © 2018 Peng Wang et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Wang, Peng
Cheng, Kun
Huang, Yan
Li, Bo
Ye, Xinggui
Chen, Xiuhong
Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title_full Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title_fullStr Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title_full_unstemmed Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title_short Multiscale Quantum Harmonic Oscillator Algorithm for Multimodal Optimization
title_sort multiscale quantum harmonic oscillator algorithm for multimodal optimization
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971293/
https://www.ncbi.nlm.nih.gov/pubmed/29861714
http://dx.doi.org/10.1155/2018/8430175
work_keys_str_mv AT wangpeng multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization
AT chengkun multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization
AT huangyan multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization
AT libo multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization
AT yexinggui multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization
AT chenxiuhong multiscalequantumharmonicoscillatoralgorithmformultimodaloptimization