Cargando…

α-Amylase and α-Glucosidase Inhibitory Activities of Chemical Constituents from Wedelia chinensis (Osbeck.) Merr. Leaves

As part of an ongoing search for new natural products from medicinal plants to treat type 2 diabetes, two new compounds, a megastigmane sesquiterpenoid sulfonic acid (1) and a new cyclohexylethanoid derivative (2), and seven related known compounds (3–9) were isolated from the leaves of Wedelia chin...

Descripción completa

Detalles Bibliográficos
Autores principales: Thao, Nguyen Phuong, Binh, Pham Thanh, Luyen, Nguyen Thi, Hung, Ta Manh, Dang, Nguyen Hai, Dat, Nguyen Tien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971303/
https://www.ncbi.nlm.nih.gov/pubmed/29862121
http://dx.doi.org/10.1155/2018/2794904
Descripción
Sumario:As part of an ongoing search for new natural products from medicinal plants to treat type 2 diabetes, two new compounds, a megastigmane sesquiterpenoid sulfonic acid (1) and a new cyclohexylethanoid derivative (2), and seven related known compounds (3–9) were isolated from the leaves of Wedelia chinensis (Osbeck.) Merr. The structures of the compounds were conducted via interpretation of their spectroscopic data (1D and 2D NMR, IR, and MS), and the absolute configurations of compound 1 were determined by the modified Mosher's method. The MeOH extract of W. chinensis was found to inhibit α-amylase and α-glucosidase inhibitory activities as well as by the compounds isolated from this extract. Furthermore, compound 7 showed the strongest effect with IC(50) values of 112.8 ± 15.1 μg/mL (against α-amylase) and 785.9 ± 12.7 μg/mL (against α-glucosidase). Compounds 1, 8, and 9 showed moderate α-amylase and α-glucosidase inhibitory effects. Other compounds showed weak or did not show any effect on both enzymes. The results suggested that the antidiabetic properties from the leaves of W. chinensis are not simply a result of each isolated compound but are due to other components such as the accessibility of polyphenolic groups to α-amylase and α-glucosidase activities.