Cargando…

Observation of Roton Mode Population in a Dipolar Quantum Gas

The concept of a roton, a special kind of elementary excitation, forming a minimum of energy at finite momentum, has been essential to understand the properties of superfluid (4)He 1. In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains d...

Descripción completa

Detalles Bibliográficos
Autores principales: Chomaz, L., van Bijnen, R. M. W., Petter, D., Faraoni, G., Baier, S., Becher, J. H., Mark, M. J., Wächtler, F., Santos, L., Ferlaino, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972007/
https://www.ncbi.nlm.nih.gov/pubmed/29861780
http://dx.doi.org/10.1038/s41567-018-0054-7
_version_ 1783326368401981440
author Chomaz, L.
van Bijnen, R. M. W.
Petter, D.
Faraoni, G.
Baier, S.
Becher, J. H.
Mark, M. J.
Wächtler, F.
Santos, L.
Ferlaino, F.
author_facet Chomaz, L.
van Bijnen, R. M. W.
Petter, D.
Faraoni, G.
Baier, S.
Becher, J. H.
Mark, M. J.
Wächtler, F.
Santos, L.
Ferlaino, F.
author_sort Chomaz, L.
collection PubMed
description The concept of a roton, a special kind of elementary excitation, forming a minimum of energy at finite momentum, has been essential to understand the properties of superfluid (4)He 1. In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated 2. In the realm of highly-controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite of their weakly-interacting character 3. This prospect has raised considerable interest 4–12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly-magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetisation axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases 13.
format Online
Article
Text
id pubmed-5972007
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-59720072018-09-05 Observation of Roton Mode Population in a Dipolar Quantum Gas Chomaz, L. van Bijnen, R. M. W. Petter, D. Faraoni, G. Baier, S. Becher, J. H. Mark, M. J. Wächtler, F. Santos, L. Ferlaino, F. Nat Phys Article The concept of a roton, a special kind of elementary excitation, forming a minimum of energy at finite momentum, has been essential to understand the properties of superfluid (4)He 1. In quantum liquids, rotons arise from the strong interparticle interactions, whose microscopic description remains debated 2. In the realm of highly-controllable quantum gases, a roton mode has been predicted to emerge due to magnetic dipole-dipole interactions despite of their weakly-interacting character 3. This prospect has raised considerable interest 4–12; yet roton modes in dipolar quantum gases have remained elusive to observations. Here we report experimental and theoretical studies of the momentum distribution in Bose-Einstein condensates of highly-magnetic erbium atoms, revealing the existence of the long-sought roton mode. Following an interaction quench, the roton mode manifests itself with the appearance of symmetric peaks at well-defined finite momentum. The roton momentum follows the predicted geometrical scaling with the inverse of the confinement length along the magnetisation axis. From the growth of the roton population, we probe the roton softening of the excitation spectrum in time and extract the corresponding imaginary roton gap. Our results provide a further step in the quest towards supersolidity in dipolar quantum gases 13. 2018-03-05 2018-05 /pmc/articles/PMC5972007/ /pubmed/29861780 http://dx.doi.org/10.1038/s41567-018-0054-7 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Chomaz, L.
van Bijnen, R. M. W.
Petter, D.
Faraoni, G.
Baier, S.
Becher, J. H.
Mark, M. J.
Wächtler, F.
Santos, L.
Ferlaino, F.
Observation of Roton Mode Population in a Dipolar Quantum Gas
title Observation of Roton Mode Population in a Dipolar Quantum Gas
title_full Observation of Roton Mode Population in a Dipolar Quantum Gas
title_fullStr Observation of Roton Mode Population in a Dipolar Quantum Gas
title_full_unstemmed Observation of Roton Mode Population in a Dipolar Quantum Gas
title_short Observation of Roton Mode Population in a Dipolar Quantum Gas
title_sort observation of roton mode population in a dipolar quantum gas
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972007/
https://www.ncbi.nlm.nih.gov/pubmed/29861780
http://dx.doi.org/10.1038/s41567-018-0054-7
work_keys_str_mv AT chomazl observationofrotonmodepopulationinadipolarquantumgas
AT vanbijnenrmw observationofrotonmodepopulationinadipolarquantumgas
AT petterd observationofrotonmodepopulationinadipolarquantumgas
AT faraonig observationofrotonmodepopulationinadipolarquantumgas
AT baiers observationofrotonmodepopulationinadipolarquantumgas
AT becherjh observationofrotonmodepopulationinadipolarquantumgas
AT markmj observationofrotonmodepopulationinadipolarquantumgas
AT wachtlerf observationofrotonmodepopulationinadipolarquantumgas
AT santosl observationofrotonmodepopulationinadipolarquantumgas
AT ferlainof observationofrotonmodepopulationinadipolarquantumgas