Cargando…
Association between Glycemic Gap and Adverse Outcomes in Critically Ill Patients with Diabetes
OBJECTIVES: Glycemic excursions are commonly seen in patients admitted to the Intensive Care Unit (ICU) and are related to adverse outcomes. Glycemic gap is a marker of this excursion in patients with diabetes. It can be used to predict adverse outcomes in patients with diabetes admitted to the ICU....
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972476/ https://www.ncbi.nlm.nih.gov/pubmed/29911033 http://dx.doi.org/10.4103/ijem.IJEM_580_17 |
Sumario: | OBJECTIVES: Glycemic excursions are commonly seen in patients admitted to the Intensive Care Unit (ICU) and are related to adverse outcomes. Glycemic gap is a marker of this excursion in patients with diabetes. It can be used to predict adverse outcomes in patients with diabetes admitted to the ICU. It is calculated by subtracting A1C-derived average glucose (ADAG) = ([28.7 × HbA1c]-46.7) from plasma glucose at admission. Objective of this study was to correlate glycemic gap and adverse outcomes in patients with type 2 diabetes mellitus (DM) admitted to the ICU. MATERIALS AND METHODS: We conducted an ambispective study to include patients with type 2 DM admitted to the ICUs from July 2015 to June 2016. The following adverse outcomes were recorded: Multiorgan dysfunction syndrome (MODS), acute respiratory distress syndrome (ARDS), shock, upper gastrointestinal (UGI) bleed, acute kidney injury (AKI), and acute respiratory failure (ARF). RESULTS: A total of 200 patients were enrolled, with a mean age ± standard deviation of 62 ± 11.24 years, and 64.5% were males. The median (interquartile range) duration of hospital stay and ICU stay were 8 (6–12) days and 4 (3–7) days, respectively. The most common primary diagnosis was cardiovascular (39.5%) followed by neurological (16.5%), infection at diagnosis (16.5%), respiratory (14%), gastrointestinal (7.5%), and others (6%). A higher glycemic gap was associated with occurrence of MODS (P < 0.01), ARDS (P = 0.026), shock (P = 0.043), UGI bleed (P = 0.013), AKI (P = 0.01), and ARF (P < 0.01). Glycemic gap cutoffs of 43.31, 45.26, and 39.12 were found to be discriminatory for predicting ICU mortality (area under the receiver operating characteristic [AUROC]=0.631, P = 0.05), MODS (AUROC = 0.725, P < 0.001), and ARF (AUROC = 0.714, P < 0.001). CONCLUSION: This study showed that higher glycemic gap levels were associated with an increased risk of MODS, ARDS, shock, UGI bleed, AKI, and ARF. Glycemic gap is a tool that can be used to determine prognosis in patients with diabetes admitted to the ICU. |
---|