Cargando…

Duration of Casual Sunlight Exposure Necessary for Adequate Vitamin D Status in Indian Men

OBJECTIVES: To investigate the duration of casual sunlight ultraviolet-B (UVB) exposure required to maintain optimal Vitamin D status (25-hydroxyvitamin-D [25(OH)D]) >50 nmol/L in urban Indian men, using polysulfone (PSU) dosimeters and a sunlight exposure questionnaire. METHODS: In healthy men (...

Descripción completa

Detalles Bibliográficos
Autores principales: Patwardhan, Vivek G., Mughal, Zulf M., Chiplonkar, Shashi A., Webb, Ann R., Kift, Richard, Khadilkar, Vaman V., Padidela, Raja, Khadilkar, Anuradha V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972483/
https://www.ncbi.nlm.nih.gov/pubmed/29911040
http://dx.doi.org/10.4103/ijem.IJEM_473_17
Descripción
Sumario:OBJECTIVES: To investigate the duration of casual sunlight ultraviolet-B (UVB) exposure required to maintain optimal Vitamin D status (25-hydroxyvitamin-D [25(OH)D]) >50 nmol/L in urban Indian men, using polysulfone (PSU) dosimeters and a sunlight exposure questionnaire. METHODS: In healthy men (aged 40–60 years) from Pune (18.52° N, 73.86° E), India, serum 25(OH)D was measured using enzyme-linked immunosorbent assay. Sunlight exposure was assessed using PSU dosimeter and by questionnaire. RESULTS: Of 160 men (48.3 ± 5.6 years), 26.8% were deficient and 40.6% had insufficient Vitamin D concentrations. A hyperbolic function for the relationship between PSU measured sunlight exposure in standard erythema dose (SED) and serum 25(OH)D concentrations (r = 0.87, P < 0.01) revealed that daily exposure of 1 SED was sufficient to maintain serum 25(OH)D concentrations over 50 nmol/L. The curve plateaued around 5 SED (80 nmol/L) and extrapolation of the curve (>5 SED) did not increase 25(OH)D concentrations above 90 nmol/L. Receiver operating curve analysis confirmed that 1 SED-UV exposure was sufficient to maintain 25(OH)D concentrations over 50 nmol/L. Based on the questionnaire data, >1 h of midday casual sunlight exposure was required to maintain serum 25(OH)D concentrations above 50 nmol/L. Duration of sunlight exposure assessed by questionnaire and PSU dosimeter showed a significant correlation (r = 0.517, P < 0.01). CONCLUSION: In urban Indian men, >1 h of casual midday sunlight exposure daily was required to maintain serum 25(OH)D concentrations above 50 nmol/L, and >2 h of casual sunlight exposure was needed to maintain 25(OH)D concentrations above 75 nmol/L. Excess sunlight did not increase 25(OH)D linearly. The sunlight exposure questionnaire was validated for use in clinical studies and surveys.