Cargando…
Engineering NOG-pathway in Escherichia coli for poly-(3-hydroxybutyrate) production from low cost carbon sources
Poly-(3-hydroxybutyrate) (P3HB) is a polyester with biodegradable and biocompatible characteristics suitable for bio-plastics and bio-medical use. In order to reduce the raw material cost, cheaper carbon sources such as xylose and glycerol were evaluated for P3HB production. We first conducted genom...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5972911/ https://www.ncbi.nlm.nih.gov/pubmed/29685061 http://dx.doi.org/10.1080/21655979.2018.1467652 |
Sumario: | Poly-(3-hydroxybutyrate) (P3HB) is a polyester with biodegradable and biocompatible characteristics suitable for bio-plastics and bio-medical use. In order to reduce the raw material cost, cheaper carbon sources such as xylose and glycerol were evaluated for P3HB production. We first conducted genome-scale metabolic network analysis to find the optimal pathways for P3HB production using xylose or glycerol respectively as the sole carbon sources. The results indicated that the non-oxidative glycolysis (NOG) pathway is important to improve the product yields. We then engineered this pathway into E. coli by introducing foreign phophoketolase enzymes. The results showed that the carbon yield improved from 0.19 to 0.24 for xylose and from 0.30 to 0.43 for glycerol. This further proved that the introduction of NOG pathway can be used as a general strategy to improve P3HB production. |
---|