Cargando…
Social computing for image matching
One of the main technological trends in the last five years is mass data analysis. This trend is due in part to the emergence of concepts such as social networks, which generate a large volume of data that can provide added value through their analysis. This article is focused on a business and empl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973563/ https://www.ncbi.nlm.nih.gov/pubmed/29813082 http://dx.doi.org/10.1371/journal.pone.0197576 |
_version_ | 1783326655909986304 |
---|---|
author | Chamoso, Pablo Rivas, Alberto Sánchez-Torres, Ramiro Rodríguez, Sara |
author_facet | Chamoso, Pablo Rivas, Alberto Sánchez-Torres, Ramiro Rodríguez, Sara |
author_sort | Chamoso, Pablo |
collection | PubMed |
description | One of the main technological trends in the last five years is mass data analysis. This trend is due in part to the emergence of concepts such as social networks, which generate a large volume of data that can provide added value through their analysis. This article is focused on a business and employment-oriented social network. More specifically, it focuses on the analysis of information provided by different users in image form. The images are analyzed to detect whether other existing users have posted or talked about the same image, even if the image has undergone some type of modification such as watermarks or color filters. This makes it possible to establish new connections among unknown users by detecting what they are posting or whether they are talking about the same images. The proposed solution consists of an image matching algorithm, which is based on the rapid calculation and comparison of hashes. However, there is a computationally expensive aspect in charge of revoking possible image transformations. As a result, the image matching process is supported by a distributed forecasting system that enables or disables nodes to serve all the possible requests. The proposed system has shown promising results for matching modified images, especially when compared with other existing systems. |
format | Online Article Text |
id | pubmed-5973563 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59735632018-06-08 Social computing for image matching Chamoso, Pablo Rivas, Alberto Sánchez-Torres, Ramiro Rodríguez, Sara PLoS One Research Article One of the main technological trends in the last five years is mass data analysis. This trend is due in part to the emergence of concepts such as social networks, which generate a large volume of data that can provide added value through their analysis. This article is focused on a business and employment-oriented social network. More specifically, it focuses on the analysis of information provided by different users in image form. The images are analyzed to detect whether other existing users have posted or talked about the same image, even if the image has undergone some type of modification such as watermarks or color filters. This makes it possible to establish new connections among unknown users by detecting what they are posting or whether they are talking about the same images. The proposed solution consists of an image matching algorithm, which is based on the rapid calculation and comparison of hashes. However, there is a computationally expensive aspect in charge of revoking possible image transformations. As a result, the image matching process is supported by a distributed forecasting system that enables or disables nodes to serve all the possible requests. The proposed system has shown promising results for matching modified images, especially when compared with other existing systems. Public Library of Science 2018-05-29 /pmc/articles/PMC5973563/ /pubmed/29813082 http://dx.doi.org/10.1371/journal.pone.0197576 Text en © 2018 Chamoso et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Chamoso, Pablo Rivas, Alberto Sánchez-Torres, Ramiro Rodríguez, Sara Social computing for image matching |
title | Social computing for image matching |
title_full | Social computing for image matching |
title_fullStr | Social computing for image matching |
title_full_unstemmed | Social computing for image matching |
title_short | Social computing for image matching |
title_sort | social computing for image matching |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973563/ https://www.ncbi.nlm.nih.gov/pubmed/29813082 http://dx.doi.org/10.1371/journal.pone.0197576 |
work_keys_str_mv | AT chamosopablo socialcomputingforimagematching AT rivasalberto socialcomputingforimagematching AT sancheztorresramiro socialcomputingforimagematching AT rodriguezsara socialcomputingforimagematching |