Cargando…

Differential incorporation of SUN-domain proteins into LINC complexes is coupled to gene expression

LInkers of Nucleoskeleton and Cytoskeleton (LINC) complexes, composed of SUN and KASH-domain proteins, span the nuclear envelope and physically connect the nuclear interior to cytoskeletal elements. Most human cells contain two SUN proteins, Sun1 and Sun2, and several KASH-proteins suggesting that m...

Descripción completa

Detalles Bibliográficos
Autores principales: May, Christopher K., Carroll, Christopher W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973619/
https://www.ncbi.nlm.nih.gov/pubmed/29813079
http://dx.doi.org/10.1371/journal.pone.0197621
Descripción
Sumario:LInkers of Nucleoskeleton and Cytoskeleton (LINC) complexes, composed of SUN and KASH-domain proteins, span the nuclear envelope and physically connect the nuclear interior to cytoskeletal elements. Most human cells contain two SUN proteins, Sun1 and Sun2, and several KASH-proteins suggesting that multiple functionally distinct LINC complexes co-exist in the nuclear envelope. We show here, however, that while Sun1 and Sun2 in HeLa cells are each able to bind KASH-domains, Sun1 is more efficiently incorporated into LINC complexes under normal growth conditions. Furthermore, the balance of Sun1 and Sun2 incorporated into LINC complexes is cell type-specific and is correlated with SRF/Mkl1-dependent gene expression. In addition, we found that Sun1 has a LINC complex-independent role in transcriptional control, possibly by regulating the SRF/Mkl1 pathway. Together, these data reveal novel insights into the mechanisms of LINC complex regulation and demonstrate that Sun1 modulates gene expression independently of its incorporation into LINC complexes.