Cargando…

Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency

Genome editing is the introduction of directed modifications in the genome, a process boosted to therapeutic levels by designer nucleases. Building on the experience of ex vivo gene therapy for severe combined immunodeficiencies, it is likely that genome editing of haematopoietic stem/progenitor cel...

Descripción completa

Detalles Bibliográficos
Autores principales: Abdul-Razak, H. H., Rocca, C. J., Howe, S. J., Alonso-Ferrero, M. E., Wang, J., Gabriel, R., Bartholomae, C. C., Gan, C. H. V., Garín, M. I., Roberts, A., Blundell, M. P., Prakash, V., Molina-Estevez, F. J., Pantoglou, J., Guenechea, G., Holmes, M. C., Gregory, P. D., Kinnon, C., von Kalle, C., Schmidt, M., Bueren, J. A., Thrasher, A. J., Yáñez-Muñoz, R. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974076/
https://www.ncbi.nlm.nih.gov/pubmed/29844458
http://dx.doi.org/10.1038/s41598-018-26439-9
_version_ 1783326742032678912
author Abdul-Razak, H. H.
Rocca, C. J.
Howe, S. J.
Alonso-Ferrero, M. E.
Wang, J.
Gabriel, R.
Bartholomae, C. C.
Gan, C. H. V.
Garín, M. I.
Roberts, A.
Blundell, M. P.
Prakash, V.
Molina-Estevez, F. J.
Pantoglou, J.
Guenechea, G.
Holmes, M. C.
Gregory, P. D.
Kinnon, C.
von Kalle, C.
Schmidt, M.
Bueren, J. A.
Thrasher, A. J.
Yáñez-Muñoz, R. J.
author_facet Abdul-Razak, H. H.
Rocca, C. J.
Howe, S. J.
Alonso-Ferrero, M. E.
Wang, J.
Gabriel, R.
Bartholomae, C. C.
Gan, C. H. V.
Garín, M. I.
Roberts, A.
Blundell, M. P.
Prakash, V.
Molina-Estevez, F. J.
Pantoglou, J.
Guenechea, G.
Holmes, M. C.
Gregory, P. D.
Kinnon, C.
von Kalle, C.
Schmidt, M.
Bueren, J. A.
Thrasher, A. J.
Yáñez-Muñoz, R. J.
author_sort Abdul-Razak, H. H.
collection PubMed
description Genome editing is the introduction of directed modifications in the genome, a process boosted to therapeutic levels by designer nucleases. Building on the experience of ex vivo gene therapy for severe combined immunodeficiencies, it is likely that genome editing of haematopoietic stem/progenitor cells (HSPC) for correction of inherited blood diseases will be an early clinical application. We show molecular evidence of gene correction in a mouse model of primary immunodeficiency. In vitro experiments in DNA-dependent protein kinase catalytic subunit severe combined immunodeficiency (Prkdc scid) fibroblasts using designed zinc finger nucleases (ZFN) and a repair template demonstrated molecular and functional correction of the defect. Following transplantation of ex vivo gene-edited Prkdc scid HSPC, some of the recipient animals carried the expected genomic signature of ZFN-driven gene correction. In some primary and secondary transplant recipients we detected double-positive CD4/CD8 T-cells in thymus and single-positive T-cells in blood, but no other evidence of immune reconstitution. However, the leakiness of this model is a confounding factor for the interpretation of the possible T-cell reconstitution. Our results provide support for the feasibility of rescuing inherited blood disease by ex vivo genome editing followed by transplantation, and highlight some of the challenges.
format Online
Article
Text
id pubmed-5974076
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-59740762018-05-31 Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency Abdul-Razak, H. H. Rocca, C. J. Howe, S. J. Alonso-Ferrero, M. E. Wang, J. Gabriel, R. Bartholomae, C. C. Gan, C. H. V. Garín, M. I. Roberts, A. Blundell, M. P. Prakash, V. Molina-Estevez, F. J. Pantoglou, J. Guenechea, G. Holmes, M. C. Gregory, P. D. Kinnon, C. von Kalle, C. Schmidt, M. Bueren, J. A. Thrasher, A. J. Yáñez-Muñoz, R. J. Sci Rep Article Genome editing is the introduction of directed modifications in the genome, a process boosted to therapeutic levels by designer nucleases. Building on the experience of ex vivo gene therapy for severe combined immunodeficiencies, it is likely that genome editing of haematopoietic stem/progenitor cells (HSPC) for correction of inherited blood diseases will be an early clinical application. We show molecular evidence of gene correction in a mouse model of primary immunodeficiency. In vitro experiments in DNA-dependent protein kinase catalytic subunit severe combined immunodeficiency (Prkdc scid) fibroblasts using designed zinc finger nucleases (ZFN) and a repair template demonstrated molecular and functional correction of the defect. Following transplantation of ex vivo gene-edited Prkdc scid HSPC, some of the recipient animals carried the expected genomic signature of ZFN-driven gene correction. In some primary and secondary transplant recipients we detected double-positive CD4/CD8 T-cells in thymus and single-positive T-cells in blood, but no other evidence of immune reconstitution. However, the leakiness of this model is a confounding factor for the interpretation of the possible T-cell reconstitution. Our results provide support for the feasibility of rescuing inherited blood disease by ex vivo genome editing followed by transplantation, and highlight some of the challenges. Nature Publishing Group UK 2018-05-29 /pmc/articles/PMC5974076/ /pubmed/29844458 http://dx.doi.org/10.1038/s41598-018-26439-9 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Abdul-Razak, H. H.
Rocca, C. J.
Howe, S. J.
Alonso-Ferrero, M. E.
Wang, J.
Gabriel, R.
Bartholomae, C. C.
Gan, C. H. V.
Garín, M. I.
Roberts, A.
Blundell, M. P.
Prakash, V.
Molina-Estevez, F. J.
Pantoglou, J.
Guenechea, G.
Holmes, M. C.
Gregory, P. D.
Kinnon, C.
von Kalle, C.
Schmidt, M.
Bueren, J. A.
Thrasher, A. J.
Yáñez-Muñoz, R. J.
Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title_full Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title_fullStr Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title_full_unstemmed Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title_short Molecular Evidence of Genome Editing in a Mouse Model of Immunodeficiency
title_sort molecular evidence of genome editing in a mouse model of immunodeficiency
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974076/
https://www.ncbi.nlm.nih.gov/pubmed/29844458
http://dx.doi.org/10.1038/s41598-018-26439-9
work_keys_str_mv AT abdulrazakhh molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT roccacj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT howesj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT alonsoferrerome molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT wangj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT gabrielr molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT bartholomaecc molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT ganchv molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT garinmi molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT robertsa molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT blundellmp molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT prakashv molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT molinaestevezfj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT pantoglouj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT guenecheag molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT holmesmc molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT gregorypd molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT kinnonc molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT vonkallec molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT schmidtm molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT buerenja molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT thrasheraj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency
AT yanezmunozrj molecularevidenceofgenomeeditinginamousemodelofimmunodeficiency