Cargando…
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
Spiking neural networks (SNNs) are promising in ascertaining brain-like behaviors since spikes are capable of encoding spatio-temporal information. Recent schemes, e.g., pre-training from artificial neural networks (ANNs) or direct training based on backpropagation (BP), make the high-performance su...
Autores principales: | Wu, Yujie, Deng, Lei, Li, Guoqi, Zhu, Jun, Shi, Luping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974215/ https://www.ncbi.nlm.nih.gov/pubmed/29875621 http://dx.doi.org/10.3389/fnins.2018.00331 |
Ejemplares similares
-
Training Deep Spiking Neural Networks Using Backpropagation
por: Lee, Jun Haeng, et al.
Publicado: (2016) -
Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
por: Zhang, Yisa, et al.
Publicado: (2023) -
Efficient training of spiking neural networks with temporally-truncated local backpropagation through time
por: Guo, Wenzhe, et al.
Publicado: (2023) -
Synthesizing Images From Spatio-Temporal Representations Using Spike-Based Backpropagation
por: Roy, Deboleena, et al.
Publicado: (2019) -
Enabling Spike-Based Backpropagation for Training Deep Neural Network Architectures
por: Lee, Chankyu, et al.
Publicado: (2020)