Cargando…
Cancer Characteristic Gene Selection via Sample Learning Based on Deep Sparse Filtering
Identification of characteristic genes associated with specific biological processes of different cancers could provide insights into the underlying cancer genetics and cancer prognostic assessment. It is of critical importance to select such characteristic genes effectively. In this paper, a novel...
Autores principales: | Liu, Jian, Cheng, Yuhu, Wang, Xuesong, Zhang, Lin, Wang, Z. Jane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974408/ https://www.ncbi.nlm.nih.gov/pubmed/29844511 http://dx.doi.org/10.1038/s41598-018-26666-0 |
Ejemplares similares
-
Tumor gene expression data classification via sample expansion-based deep learning
por: Liu, Jian, et al.
Publicado: (2017) -
One-Step Robust Low-Rank Subspace Segmentation for Tumor Sample Clustering
por: Liu, Jian, et al.
Publicado: (2021) -
Compressed sensing & sparse filtering
por: Carmi, Avishy Y, et al.
Publicado: (2013) -
Information Filtering in Sparse Online Systems: Recommendation via Semi-Local Diffusion
por: Zeng, Wei, et al.
Publicado: (2013) -
Deep learning through sparse and low-rank modeling
por: Wang, Zhangyang, et al.
Publicado: (2019)