Cargando…
Machine learning from fetal flow waveforms to predict adverse perinatal outcomes: a study protocol
Background: In Pakistan, stillbirth rates and early neonatal mortality rates are amongst the highest in the world. The aim of this study is to provide proof of concept for using a computational model of fetal haemodynamics, combined with machine learning. This model will be based on Doppler patterns...
Autores principales: | Hoodbhoy, Zahra, Hasan, Babar, Jehan, Fyezah, Bijnens, Bart, Chowdhury, Devyani |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974597/ https://www.ncbi.nlm.nih.gov/pubmed/29863146 http://dx.doi.org/10.12688/gatesopenres.12796.1 |
Ejemplares similares
-
Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
por: Hasan, Babar S, et al.
Publicado: (2023) -
Use of Machine Learning Algorithms for Prediction of Fetal Risk using Cardiotocographic Data
por: Hoodbhoy, Zahra, et al.
Publicado: (2019) -
Impact of pre-eclampsia on the cardiovascular health of the offspring: a cohort study protocol
por: Hoodbhoy, Zahra, et al.
Publicado: (2018) -
Detection of subclinical rheumatic heart disease in children using a deep learning algorithm on digital stethoscope: a study protocol
por: Ali, Fatima, et al.
Publicado: (2021) -
Neurodevelopment assessment of small for gestational age children in a community-based cohort from Pakistan
por: Naz, Sabahat, et al.
Publicado: (2023)