Cargando…
AFM Imaging of Lipid Domains in Model Membranes
Characterization of the two-dimensional organization of biological membranes is one of the most important issues that remains to be achieved in order to understand their structure-function relationships. According to the current view, biological membranes would be organized in in-plane functional mi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
TheScientificWorldJOURNAL
2003
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974747/ https://www.ncbi.nlm.nih.gov/pubmed/12806121 http://dx.doi.org/10.1100/tsw.2003.12 |
Sumario: | Characterization of the two-dimensional organization of biological membranes is one of the most important issues that remains to be achieved in order to understand their structure-function relationships. According to the current view, biological membranes would be organized in in-plane functional microdomains. At least for one category of them, called rafts, the lateral segregation would be driven by lipid-lipid interactions. Basic questions like the size, the kinetics of formation, or the transbilayer organization of lipid microdomains are still a matter of debate, even in model membranes. Because of its capacity to image structures with a resolution that extends from the molecular to the microscopic level, atomic force microscopy (AFM) is a useful tool for probing the mesoscopic lateral organization of lipid mixtures. This paper reviews AFM studies on lateral lipid domains induced by lipid-lipid interactions in model membranes. |
---|