Cargando…
Proximal Phenotyping and Machine Learning Methods to Identify Septoria Tritici Blotch Disease Symptoms in Wheat
Phenotyping with proximal sensors allow high-precision measurements of plant traits both in the controlled conditions and in the field. In this work, using machine learning, an integrated analysis was done from the data obtained from spectroradiometer, infrared thermometer, and chlorophyll fluoresce...
Autores principales: | Odilbekov, Firuz, Armoniené, Rita, Henriksson, Tina, Chawade, Aakash |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5974968/ https://www.ncbi.nlm.nih.gov/pubmed/29875788 http://dx.doi.org/10.3389/fpls.2018.00685 |
Ejemplares similares
-
GWAS-Assisted Genomic Prediction to Predict Resistance to Septoria Tritici Blotch in Nordic Winter Wheat at Seedling Stage
por: Odilbekov, Firuz, et al.
Publicado: (2019) -
Exploring GWAS and genomic prediction to improve Septoria tritici blotch resistance in wheat
por: Zakieh, Mustafa, et al.
Publicado: (2023) -
Predicting yellow rust in wheat breeding trials by proximal phenotyping and machine learning
por: Koc, Alexander, et al.
Publicado: (2022) -
Hyperspectral Canopy Sensing of Wheat Septoria Tritici Blotch Disease
por: Yu, Kang, et al.
Publicado: (2018) -
Genome-Wide Association Analysis and Genomic Prediction for Adult-Plant Resistance to Septoria Tritici Blotch and Powdery Mildew in Winter Wheat
por: Alemu, Admas, et al.
Publicado: (2021)