Cargando…
Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage
Despite transferrin being the main circulating carrier of iron in body fluids, and iron overload conditions being known to worsen stroke outcome through reactive oxygen species (ROS)-induced damage, the contribution of blood transferrin saturation (TSAT) to stroke brain damage is unknown. The object...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975212/ https://www.ncbi.nlm.nih.gov/pubmed/29248829 http://dx.doi.org/10.1016/j.redox.2017.11.026 |
_version_ | 1783326948180623360 |
---|---|
author | DeGregorio-Rocasolano, Nuria Martí-Sistac, Octavi Ponce, Jovita Castelló-Ruiz, María Millán, Mònica Guirao, Verónica García-Yébenes, Isaac Salom, Juan B. Ramos-Cabrer, Pedro Alborch, Enrique Lizasoain, Ignacio Castillo, José Dávalos, Antoni Gasull, Teresa |
author_facet | DeGregorio-Rocasolano, Nuria Martí-Sistac, Octavi Ponce, Jovita Castelló-Ruiz, María Millán, Mònica Guirao, Verónica García-Yébenes, Isaac Salom, Juan B. Ramos-Cabrer, Pedro Alborch, Enrique Lizasoain, Ignacio Castillo, José Dávalos, Antoni Gasull, Teresa |
author_sort | DeGregorio-Rocasolano, Nuria |
collection | PubMed |
description | Despite transferrin being the main circulating carrier of iron in body fluids, and iron overload conditions being known to worsen stroke outcome through reactive oxygen species (ROS)-induced damage, the contribution of blood transferrin saturation (TSAT) to stroke brain damage is unknown. The objective of this study was to obtain evidence on whether TSAT determines the impact of experimental ischemic stroke on brain damage and whether iron-free transferrin (apotransferrin, ATf)-induced reduction of TSAT is neuroprotective. We found that experimental ischemic stroke promoted an early extravasation of circulating iron-loaded transferrin (holotransferrin, HTf) to the ischemic brain parenchyma. In vitro, HTf was found to boost ROS production and to be harmful to primary neuronal cultures exposed to oxygen and glucose deprivation. In stroked rats, whereas increasing TSAT with exogenous HTf was detrimental, administration of exogenous ATf and the subsequent reduction of TSAT was neuroprotective. Mechanistically, ATf did not prevent extravasation of HTf to the brain parenchyma in rats exposed to ischemic stroke. However, ATf in vitro reduced NMDA-induced neuronal uptake of HTf and also both the NMDA-mediated lipid peroxidation derived 4-HNE and the resulting neuronal death without altering Ca(2+)-calcineurin signaling downstream the NMDA receptor. Removal of transferrin from the culture media or blockade of transferrin receptors reduced neuronal death. Together, our data establish that blood TSAT exerts a critical role in experimental stroke-induced brain damage. In addition, our findings suggest that the protective effect of ATf at the neuronal level resides in preventing NMDA-induced HTf uptake and ROS production, which in turn reduces neuronal damage. |
format | Online Article Text |
id | pubmed-5975212 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-59752122018-05-31 Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage DeGregorio-Rocasolano, Nuria Martí-Sistac, Octavi Ponce, Jovita Castelló-Ruiz, María Millán, Mònica Guirao, Verónica García-Yébenes, Isaac Salom, Juan B. Ramos-Cabrer, Pedro Alborch, Enrique Lizasoain, Ignacio Castillo, José Dávalos, Antoni Gasull, Teresa Redox Biol Research Paper Despite transferrin being the main circulating carrier of iron in body fluids, and iron overload conditions being known to worsen stroke outcome through reactive oxygen species (ROS)-induced damage, the contribution of blood transferrin saturation (TSAT) to stroke brain damage is unknown. The objective of this study was to obtain evidence on whether TSAT determines the impact of experimental ischemic stroke on brain damage and whether iron-free transferrin (apotransferrin, ATf)-induced reduction of TSAT is neuroprotective. We found that experimental ischemic stroke promoted an early extravasation of circulating iron-loaded transferrin (holotransferrin, HTf) to the ischemic brain parenchyma. In vitro, HTf was found to boost ROS production and to be harmful to primary neuronal cultures exposed to oxygen and glucose deprivation. In stroked rats, whereas increasing TSAT with exogenous HTf was detrimental, administration of exogenous ATf and the subsequent reduction of TSAT was neuroprotective. Mechanistically, ATf did not prevent extravasation of HTf to the brain parenchyma in rats exposed to ischemic stroke. However, ATf in vitro reduced NMDA-induced neuronal uptake of HTf and also both the NMDA-mediated lipid peroxidation derived 4-HNE and the resulting neuronal death without altering Ca(2+)-calcineurin signaling downstream the NMDA receptor. Removal of transferrin from the culture media or blockade of transferrin receptors reduced neuronal death. Together, our data establish that blood TSAT exerts a critical role in experimental stroke-induced brain damage. In addition, our findings suggest that the protective effect of ATf at the neuronal level resides in preventing NMDA-induced HTf uptake and ROS production, which in turn reduces neuronal damage. Elsevier 2017-12-02 /pmc/articles/PMC5975212/ /pubmed/29248829 http://dx.doi.org/10.1016/j.redox.2017.11.026 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper DeGregorio-Rocasolano, Nuria Martí-Sistac, Octavi Ponce, Jovita Castelló-Ruiz, María Millán, Mònica Guirao, Verónica García-Yébenes, Isaac Salom, Juan B. Ramos-Cabrer, Pedro Alborch, Enrique Lizasoain, Ignacio Castillo, José Dávalos, Antoni Gasull, Teresa Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title | Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title_full | Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title_fullStr | Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title_full_unstemmed | Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title_short | Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage |
title_sort | iron-loaded transferrin (tf) is detrimental whereas iron-free tf confers protection against brain ischemia by modifying blood tf saturation and subsequent neuronal damage |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975212/ https://www.ncbi.nlm.nih.gov/pubmed/29248829 http://dx.doi.org/10.1016/j.redox.2017.11.026 |
work_keys_str_mv | AT degregoriorocasolanonuria ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT martisistacoctavi ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT poncejovita ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT castelloruizmaria ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT millanmonica ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT guiraoveronica ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT garciayebenesisaac ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT salomjuanb ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT ramoscabrerpedro ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT alborchenrique ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT lizasoainignacio ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT castillojose ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT davalosantoni ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage AT gasullteresa ironloadedtransferrintfisdetrimentalwhereasironfreetfconfersprotectionagainstbrainischemiabymodifyingbloodtfsaturationandsubsequentneuronaldamage |