Cargando…

Novel splice site IDUA gene mutation in Tunisian pedigrees with hurler syndrome

BACKGROUND: The mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease resulting from the defective activity of the enzyme α-L-iduronidase (IDUA). The disease has three major clinical subtypes (severe Hurler syndrome, intermediate Hurler–Scheie syndrome and attenuated Scheie syndrome)....

Descripción completa

Detalles Bibliográficos
Autores principales: Chkioua, Latifa, Boudabous, Hela, Jaballi, Ibtissem, Grissa, Oussama, Turkia, Hadhami Ben, Tebib, Neji, Laradi, Sandrine
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975427/
https://www.ncbi.nlm.nih.gov/pubmed/29843745
http://dx.doi.org/10.1186/s13000-018-0710-3
Descripción
Sumario:BACKGROUND: The mucopolysaccharidosis type I (MPS I) is a lysosomal storage disease resulting from the defective activity of the enzyme α-L-iduronidase (IDUA). The disease has three major clinical subtypes (severe Hurler syndrome, intermediate Hurler–Scheie syndrome and attenuated Scheie syndrome). We aim to identify the genetic variants in MPS I patients and to investigate the effect of the novel splice site mutation on splicing of IDUA- mRNA variability using bioinformatics tools. METHODS: The IDUA mutations were determined in four MPS I patients from four families from Northern Tunisia, by amplifying and sequencing each of the IDUA exons and intron–exon junctions. RESULTS: One novel splice site IDUA mutation, c.1650 + 1G > T in intron 11 and two previously reported mutations, p.A75T and p.R555H, were detected. The patients in families 1 and 2 who have the Hurler phenotype were homozygotes for the novel splice site mutation c.1650 + 1G > T. The patient in family 3, who also had the Hurler phenotype, was a compound heterozygote for the novel splice site mutation c.1650 + 1G > T and for the previously reported missense mutation p.A75T. The patient in family 4 who had the Hurler–Scheie phenotype was a compound heterozygote for the novel splice site mutation c.1650 + 1G > T and for the previously reported missense mutation p.R555H. In addition, four known IDUA polymorphisms were identified. Bioinformatics tools allowed us to associate the variant c.1650 + 1G > T with the severe clinical phenotype of MPS I. This variant affects the essential nucleotide + 1 (G to T) of the donor splice site of IDUA intron 11. The G > T in intron 11 leads to wild type donor site broken with minus 19.97% value compared to normal value with 0%, hence the new splice site acceptor has plus 5.59%. CONCLUSIONS: The present findings indicate that the identified mutations facilitate the accurate carrier detection (genetic counseling of at-risk relatives) and the molecular prenatal diagnosis in Tunisia.