Cargando…
Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2
Immunotherapies targeting programmed cell death protein 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1), dramatically improve the survival of melanoma patients. However, only ∼40% of treated patients demonstrate a clinical response to single-agent anti-PD-1 therapy. An intact tumor re...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975601/ https://www.ncbi.nlm.nih.gov/pubmed/29872580 http://dx.doi.org/10.1080/2162402X.2018.1438106 |
Sumario: | Immunotherapies targeting programmed cell death protein 1 (PD-1) or its ligand, programmed cell death ligand 1 (PD-L1), dramatically improve the survival of melanoma patients. However, only ∼40% of treated patients demonstrate a clinical response to single-agent anti-PD-1 therapy. An intact tumor response to type-II interferon (i.e. IFN-γ) correlates with response to anti-PD-1, and patients with de novo or acquired resistance may harbor loss-of-function alterations in the JAK/STAT pathway, which lies downstream of the interferon gamma receptor (IFNGR1/2). In this study, we dissected the specific roles of individual JAK/STAT pathway members on the IFN-γ response, and identified JAK1 as the primary mediator of JAK/STAT signaling associated with IFN-γ-induced expression of antigen-presenting molecules MHC-I and MHC-II, as well as PD-L1 and the cytostatic response to IFN-γ. In contrast to the crucial role of JAK1, JAK2 was largely dispensable in mediating most IFN-γ effects. In a mouse melanoma model, inhibition of JAK1/2 in combination with anti-PD-L1 therapy partially blocked anti-tumor immunologic responses, while selective JAK2 inhibition appeared to augment therapy. Amplification of JAK/STAT signaling in tumor cells through genetic inhibition of the negative regulator PTPN2 potentiated IFN-γ response in vitro and in vivo, and may be a target to enhance immunotherapy efficacy. |
---|