Cargando…
Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach
OBJECTIVES: Identifying all published reports of randomized controlled trials (RCTs) is an important aim, but it requires extensive manual effort to separate RCTs from non-RCTs, even using current machine learning (ML) approaches. We aimed to make this process more efficient via a hybrid approach us...
Autores principales: | Wallace, Byron C, Noel-Storr, Anna, Marshall, Iain J, Cohen, Aaron M, Smalheiser, Neil R, Thomas, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975623/ https://www.ncbi.nlm.nih.gov/pubmed/28541493 http://dx.doi.org/10.1093/jamia/ocx053 |
Ejemplares similares
-
Machine learning for identifying Randomized Controlled Trials: An evaluation and practitioner's guide
por: Marshall, Iain J., et al.
Publicado: (2018) -
Crowdsourced data management: hybrid machine-human computing
por: Li, Guoliang, et al.
Publicado: (2018) -
Toward systematic review automation: a practical guide to using machine learning tools in research synthesis
por: Marshall, Iain J., et al.
Publicado: (2019) -
Crowdsourcing the identification of studies for COVID‐19‐related Cochrane Rapid Reviews
por: Noel‐Storr, Anna, et al.
Publicado: (2022) -
An exploration of crowdsourcing citation screening for systematic reviews
por: Mortensen, Michael L., et al.
Publicado: (2017)