Cargando…
A curve-crossing model to rationalize and optimize diarylethene dyads
Going from photochromic compounds presenting a single switchable function to multi-addressable photochromic multimers remains an extremely difficult task notably because the interactions of several photochromic units through a linker generally result in a substantial loss of photoactivity. Due to th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975843/ https://www.ncbi.nlm.nih.gov/pubmed/29910863 http://dx.doi.org/10.1039/c5sc01960e |
_version_ | 1783327073548369920 |
---|---|
author | Lasorne, Benjamin Fihey, Arnaud Mendive-Tapia, David Jacquemin, Denis |
author_facet | Lasorne, Benjamin Fihey, Arnaud Mendive-Tapia, David Jacquemin, Denis |
author_sort | Lasorne, Benjamin |
collection | PubMed |
description | Going from photochromic compounds presenting a single switchable function to multi-addressable photochromic multimers remains an extremely difficult task notably because the interactions of several photochromic units through a linker generally result in a substantial loss of photoactivity. Due to their size and the intrinsic complexity of their electronic structure, coupled photochromes also constitute a fundamental challenge for theoretical chemistry. We present here an effective curve-crossing model that, used in connection with easily accessible ab initio data, allows a first understanding of the difficulty to obtain efficient multiphotochromes. Indeed, we demonstrate that extra crossing points, specific to multiphotochromes, have to be passed to ensure reactivity. In addition, the proposed approach allows the definition of an intuitive tilt criterion that can be used to screen a large number of substitution patterns and hence help in the design of new compounds, an aspect that is also developed here. The compatibility of this tilt criterion with previously proposed static Franck–Condon parameters is discussed as well. |
format | Online Article Text |
id | pubmed-5975843 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-59758432018-06-15 A curve-crossing model to rationalize and optimize diarylethene dyads Lasorne, Benjamin Fihey, Arnaud Mendive-Tapia, David Jacquemin, Denis Chem Sci Chemistry Going from photochromic compounds presenting a single switchable function to multi-addressable photochromic multimers remains an extremely difficult task notably because the interactions of several photochromic units through a linker generally result in a substantial loss of photoactivity. Due to their size and the intrinsic complexity of their electronic structure, coupled photochromes also constitute a fundamental challenge for theoretical chemistry. We present here an effective curve-crossing model that, used in connection with easily accessible ab initio data, allows a first understanding of the difficulty to obtain efficient multiphotochromes. Indeed, we demonstrate that extra crossing points, specific to multiphotochromes, have to be passed to ensure reactivity. In addition, the proposed approach allows the definition of an intuitive tilt criterion that can be used to screen a large number of substitution patterns and hence help in the design of new compounds, an aspect that is also developed here. The compatibility of this tilt criterion with previously proposed static Franck–Condon parameters is discussed as well. Royal Society of Chemistry 2015-10-01 2015-06-29 /pmc/articles/PMC5975843/ /pubmed/29910863 http://dx.doi.org/10.1039/c5sc01960e Text en This journal is © The Royal Society of Chemistry 2015 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Lasorne, Benjamin Fihey, Arnaud Mendive-Tapia, David Jacquemin, Denis A curve-crossing model to rationalize and optimize diarylethene dyads |
title | A curve-crossing model to rationalize and optimize diarylethene dyads
|
title_full | A curve-crossing model to rationalize and optimize diarylethene dyads
|
title_fullStr | A curve-crossing model to rationalize and optimize diarylethene dyads
|
title_full_unstemmed | A curve-crossing model to rationalize and optimize diarylethene dyads
|
title_short | A curve-crossing model to rationalize and optimize diarylethene dyads
|
title_sort | curve-crossing model to rationalize and optimize diarylethene dyads |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5975843/ https://www.ncbi.nlm.nih.gov/pubmed/29910863 http://dx.doi.org/10.1039/c5sc01960e |
work_keys_str_mv | AT lasornebenjamin acurvecrossingmodeltorationalizeandoptimizediarylethenedyads AT fiheyarnaud acurvecrossingmodeltorationalizeandoptimizediarylethenedyads AT mendivetapiadavid acurvecrossingmodeltorationalizeandoptimizediarylethenedyads AT jacquemindenis acurvecrossingmodeltorationalizeandoptimizediarylethenedyads AT lasornebenjamin curvecrossingmodeltorationalizeandoptimizediarylethenedyads AT fiheyarnaud curvecrossingmodeltorationalizeandoptimizediarylethenedyads AT mendivetapiadavid curvecrossingmodeltorationalizeandoptimizediarylethenedyads AT jacquemindenis curvecrossingmodeltorationalizeandoptimizediarylethenedyads |