Cargando…

Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design

Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accelerated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely tumor-specific. Therefore...

Descripción completa

Detalles Bibliográficos
Autores principales: Drent, Esther, Poels, Renée, Mulders, Manon J., van de Donk, Niels W. C. J., Themeli, Maria, Lokhorst, Henk M., Mutis, Tuna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976165/
https://www.ncbi.nlm.nih.gov/pubmed/29847570
http://dx.doi.org/10.1371/journal.pone.0197349
Descripción
Sumario:Recent clinical advances with chimeric antigen receptor (CAR) T cells have led to the accelerated clinical approval of CD19-CARs to treat acute lymphoblastic leukemia. The CAR T cell therapy is nevertheless associated with toxicities, especially if the CARs are not entirely tumor-specific. Therefore, strategies for controlling the CAR T cell activity are required to improve their safety profile. Here, by using the multiple myeloma (MM)-associated CD38 molecule as target molecule, we tested the feasibility and utility of a doxycycline (DOX) inducible Tet-on CD38-CAR design to control the off-target toxicities of CAR T cells. Using CARs with high affinity to CD38, we demonstrate that this strategy allows the proper induction of CD38-CARs and CAR-mediated T cell cytotoxicity in a DOX-dose dependent manner. Especially when the DOX dose was limited to 10ng/ml, its removal resulted in a relatively rapid decay of CAR- related off-tumor effects within 24 hours, indicating the active controllability of undesired CAR activity. This Tet-on CAR design also allowed us to induce the maximal anti-MM cytotoxic activity of affinity-optimized CD38-CAR T cells, which already display a low toxicity profile, hereby adding a second level of safety to these cells. Collectively, these results indicate the possibility to utilize this DOX inducible CAR-design to actively regulate the CAR-mediated activities of therapeutic T cells. We therefore conclude that the Tet-on system may be more advantageous above suicide-genes to control the potential toxicities of CAR T cells without the need to destroy them permanently.