Cargando…
Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao
Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sp...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976196/ https://www.ncbi.nlm.nih.gov/pubmed/29847572 http://dx.doi.org/10.1371/journal.pone.0197824 |
_version_ | 1783327133638066176 |
---|---|
author | de Bakker, Didier M. Webb, Alice E. van den Bogaart, Lisanne A. van Heuven, Steven M. A. C. Meesters, Erik H. van Duyl, Fleur C. |
author_facet | de Bakker, Didier M. Webb, Alice E. van den Bogaart, Lisanne A. van Heuven, Steven M. A. C. Meesters, Erik H. van Duyl, Fleur C. |
author_sort | de Bakker, Didier M. |
collection | PubMed |
description | Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods. |
format | Online Article Text |
id | pubmed-5976196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-59761962018-06-17 Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao de Bakker, Didier M. Webb, Alice E. van den Bogaart, Lisanne A. van Heuven, Steven M. A. C. Meesters, Erik H. van Duyl, Fleur C. PLoS One Research Article Excavating sponges are among the most important macro-eroders of carbonate substrates in marine systems. Their capacity to remove substantial amounts of limestone makes these animals significant players that can unbalance the reef carbonate budget of tropical coral reefs. Nevertheless, excavating sponges are currently rarely incorporated in standardized surveys and experimental work is often restricted to a few species. Here were provide chemical and mechanical bioerosion rates for the six excavating sponge species most commonly found on the shallow reef of Curaçao (southern Caribbean): Cliona caribbaea, C. aprica, C. delitrix, C. amplicavata, Siphonodictyon brevitubulatum and Suberea flavolivescens. Chemical, mechanical and total bioerosion rates were estimated based on various experimental approaches applied to sponge infested limestone cores. Conventional standing incubation techniques were shown to strongly influence the chemical dissolution signal. Final rates, based on the change in alkalinity of the incubation water, declined significantly as a function of incubation time. This effect was mitigated by the use of a flow-through incubation system. Additionally, we found that mechanically removed carbonate fragments collected in the flow-through chamber (1 h) as well as a long-term collection method (1 wk) generally yielded comparable estimates for the capacity of these sponges to mechanically remove substratum. Observed interspecific variation could evidently be linked to the adopted boring strategy (i.e. gallery-forming, cavity-forming or network-working) and presence or absence of symbiotic zooxanthellae. Notably, a clear diurnal pattern was found only in species that harbour a dense photosymbiotic community. In these species chemical erosion was substantially higher during the day. Overall, the sum of individually acquired chemical and mechanical erosion using flow-through incubations was comparable to rates obtained gravimetrically. Such consistency is a first in this field of research. These findings support the much needed confirmation that, depending on the scientific demand, the different approaches presented here can be implemented concurrently as standardized methods. Public Library of Science 2018-05-30 /pmc/articles/PMC5976196/ /pubmed/29847572 http://dx.doi.org/10.1371/journal.pone.0197824 Text en © 2018 de Bakker et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article de Bakker, Didier M. Webb, Alice E. van den Bogaart, Lisanne A. van Heuven, Steven M. A. C. Meesters, Erik H. van Duyl, Fleur C. Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title | Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title_full | Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title_fullStr | Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title_full_unstemmed | Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title_short | Quantification of chemical and mechanical bioerosion rates of six Caribbean excavating sponge species found on the coral reefs of Curaçao |
title_sort | quantification of chemical and mechanical bioerosion rates of six caribbean excavating sponge species found on the coral reefs of curaçao |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976196/ https://www.ncbi.nlm.nih.gov/pubmed/29847572 http://dx.doi.org/10.1371/journal.pone.0197824 |
work_keys_str_mv | AT debakkerdidierm quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao AT webbalicee quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao AT vandenbogaartlisannea quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao AT vanheuvenstevenmac quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao AT meesterserikh quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao AT vanduylfleurc quantificationofchemicalandmechanicalbioerosionratesofsixcaribbeanexcavatingspongespeciesfoundonthecoralreefsofcuracao |