Cargando…
Sharp bounds for the Sándor–Yang means in terms of arithmetic and contra-harmonic means
In the article, we provide several sharp upper and lower bounds for two Sándor–Yang means in terms of combinations of arithmetic and contra-harmonic means.
Autores principales: | Xu, Hui-Zuo, Chu, Yu-Ming, Qian, Wei-Mao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5976722/ https://www.ncbi.nlm.nih.gov/pubmed/29887726 http://dx.doi.org/10.1186/s13660-018-1719-6 |
Ejemplares similares
-
Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters
por: Qian, Wei-Mao, et al.
Publicado: (2017) -
Optimal bounds for Neuman-Sándor mean in terms of the convex combination of the logarithmic and the second Seiffert means
por: Chen, Jing-Jing, et al.
Publicado: (2017) -
Bounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
por: Jiang, Wei-Dong
Publicado: (2013) -
Optimal inequalities for bounding Toader mean by arithmetic and quadratic means
por: Zhao, Tie-Hong, et al.
Publicado: (2017) -
Optimal bounds for arithmetic-geometric and Toader means in terms of generalized logarithmic mean
por: Ding, Qing, et al.
Publicado: (2017)