Cargando…
CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication
Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV) with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient v...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977251/ https://www.ncbi.nlm.nih.gov/pubmed/29762484 http://dx.doi.org/10.3390/v10050258 |
_version_ | 1783327339960074240 |
---|---|
author | Finnen, Renée L. Banfield, Bruce W. |
author_facet | Finnen, Renée L. Banfield, Bruce W. |
author_sort | Finnen, Renée L. |
collection | PubMed |
description | Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV) with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated. |
format | Online Article Text |
id | pubmed-5977251 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59772512018-06-01 CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication Finnen, Renée L. Banfield, Bruce W. Viruses Article Studies from multiple laboratories using different strains or species of herpes simplex virus (HSV) with deletions in UL21 have yielded conflicting results regarding the necessity of pUL21 in HSV infection. To resolve this discrepancy, we utilized CRISPR/Cas9 mutagenesis to isolate pUL21 deficient viruses in multiple HSV backgrounds, and performed a side-by-side comparison of the cell-to-cell spread and replication phenotypes of these viruses. These analyses confirmed previous studies implicating the involvement of pUL21 in cell-to-cell spread of HSV. Cell-to-cell spread of HSV-2 was more greatly affected by the lack of pUL21 than HSV-1, and strain-specific differences in the requirement for pUL21 in cell-to-cell spread were also noted. HSV-2 strain 186 lacking pUL21 was particularly crippled in both cell-to-cell spread and viral replication in non-complementing cells, in comparison to other HSV strains lacking pUL21, suggesting that the strict requirement for pUL21 by strain 186 may not be representative of the HSV-2 species as a whole. This work highlights CRISPR/Cas9 technology as a useful tool for rapidly constructing deletion mutants of alphaherpesviruses, regardless of background strain, and should find great utility whenever strain-specific differences need to be investigated. MDPI 2018-05-15 /pmc/articles/PMC5977251/ /pubmed/29762484 http://dx.doi.org/10.3390/v10050258 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Finnen, Renée L. Banfield, Bruce W. CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title | CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title_full | CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title_fullStr | CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title_full_unstemmed | CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title_short | CRISPR/Cas9 Mutagenesis of UL21 in Multiple Strains of Herpes Simplex Virus Reveals Differential Requirements for pUL21 in Viral Replication |
title_sort | crispr/cas9 mutagenesis of ul21 in multiple strains of herpes simplex virus reveals differential requirements for pul21 in viral replication |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977251/ https://www.ncbi.nlm.nih.gov/pubmed/29762484 http://dx.doi.org/10.3390/v10050258 |
work_keys_str_mv | AT finnenreneel crisprcas9mutagenesisoful21inmultiplestrainsofherpessimplexvirusrevealsdifferentialrequirementsforpul21inviralreplication AT banfieldbrucew crisprcas9mutagenesisoful21inmultiplestrainsofherpessimplexvirusrevealsdifferentialrequirementsforpul21inviralreplication |