Cargando…

Cucurbit[n]uril (n = 6, 7) Based Carbon-Gold Hybrids with Peroxidase-Like Activity

Despite the combination of molecular recognition and local electric field enhancement endowing cucurbit[n]uril-capped metallic nanoparticles, indicating great potential in a variety of areas, prior work has paid little attention to carbonizing cucurbit[n]uril on the surface of gold nanoparticles, wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Liangfeng, Zeng, Yan, Liu, Simin, Liang, Feng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977287/
https://www.ncbi.nlm.nih.gov/pubmed/29695131
http://dx.doi.org/10.3390/nano8050273
Descripción
Sumario:Despite the combination of molecular recognition and local electric field enhancement endowing cucurbit[n]uril-capped metallic nanoparticles, indicating great potential in a variety of areas, prior work has paid little attention to carbonizing cucurbit[n]uril on the surface of gold nanoparticles, which may propose new carbon-gold hybrid materials with interesting applications. In this work, we developed a simple and cost-effective method to prepare carbon-gold hybrids by carbonizing cucurbit[n]uril modified gold nanoparticles. The as-prepared cucurbit[n]uril based carbon and carbon-gold hybrid materials have shown to possess peroxidase-like activity. All cucurbit[n]uril based nanomaterials exhibited high catalytic activity over a pH range 2–6 and more tolerant to high temperature (up to 60 °C) when compared to natural horseradish peroxidase.