Cargando…

Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro mode...

Descripción completa

Detalles Bibliográficos
Autores principales: van der Valk, Dewy C., van der Ven, Casper F. T., Blaser, Mark C., Grolman, Joshua M., Wu, Pin-Jou, Fenton, Owen S., Lee, Lang H., Tibbitt, Mark W., Andresen, Jason L., Wen, Jennifer R., Ha, Anna H., Buffolo, Fabrizio, van Mil, Alain, Bouten, Carlijn V. C., Body, Simon C., Mooney, David J., Sluijter, Joost P. G., Aikawa, Masanori, Hjortnaes, Jesper, Langer, Robert, Aikawa, Elena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977310/
https://www.ncbi.nlm.nih.gov/pubmed/29751516
http://dx.doi.org/10.3390/nano8050296
_version_ 1783327353512919040
author van der Valk, Dewy C.
van der Ven, Casper F. T.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Fenton, Owen S.
Lee, Lang H.
Tibbitt, Mark W.
Andresen, Jason L.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Langer, Robert
Aikawa, Elena
author_facet van der Valk, Dewy C.
van der Ven, Casper F. T.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Fenton, Owen S.
Lee, Lang H.
Tibbitt, Mark W.
Andresen, Jason L.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Langer, Robert
Aikawa, Elena
author_sort van der Valk, Dewy C.
collection PubMed
description In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
format Online
Article
Text
id pubmed-5977310
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-59773102018-06-05 Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics van der Valk, Dewy C. van der Ven, Casper F. T. Blaser, Mark C. Grolman, Joshua M. Wu, Pin-Jou Fenton, Owen S. Lee, Lang H. Tibbitt, Mark W. Andresen, Jason L. Wen, Jennifer R. Ha, Anna H. Buffolo, Fabrizio van Mil, Alain Bouten, Carlijn V. C. Body, Simon C. Mooney, David J. Sluijter, Joost P. G. Aikawa, Masanori Hjortnaes, Jesper Langer, Robert Aikawa, Elena Nanomaterials (Basel) Article In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD. MDPI 2018-05-03 /pmc/articles/PMC5977310/ /pubmed/29751516 http://dx.doi.org/10.3390/nano8050296 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
van der Valk, Dewy C.
van der Ven, Casper F. T.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Fenton, Owen S.
Lee, Lang H.
Tibbitt, Mark W.
Andresen, Jason L.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Langer, Robert
Aikawa, Elena
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_full Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_fullStr Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_full_unstemmed Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_short Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_sort engineering a 3d-bioprinted model of human heart valve disease using nanoindentation-based biomechanics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977310/
https://www.ncbi.nlm.nih.gov/pubmed/29751516
http://dx.doi.org/10.3390/nano8050296
work_keys_str_mv AT vandervalkdewyc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vandervencasperft engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT blasermarkc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT grolmanjoshuam engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT wupinjou engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT fentonowens engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT leelangh engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT tibbittmarkw engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT andresenjasonl engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT wenjenniferr engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT haannah engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT buffolofabrizio engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vanmilalain engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT boutencarlijnvc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT bodysimonc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT mooneydavidj engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT sluijterjoostpg engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT aikawamasanori engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT hjortnaesjesper engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT langerrobert engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT aikawaelena engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics