Cargando…

Clinical value of 3D printing guide plate in core decompression plus porous bioceramics rod placement for the treatment of early osteonecrosis of the femoral head

BACKGROUND: The conventional method of core decompression combined with porous bioceramics rod is usually performed under C-arm fluoroscopy for the treatment of early osteonecrosis of the femoral head (ONFH). This study was to evaluate the clinical value and efficacy of three-dimensional (3D) printi...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Bo, Lei, Pengfei, Liu, Hao, Tian, Xiaobin, Wen, Ting, Hu, Ruyin, Hu, Yihe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977560/
https://www.ncbi.nlm.nih.gov/pubmed/29848357
http://dx.doi.org/10.1186/s13018-018-0812-3
Descripción
Sumario:BACKGROUND: The conventional method of core decompression combined with porous bioceramics rod is usually performed under C-arm fluoroscopy for the treatment of early osteonecrosis of the femoral head (ONFH). This study was to evaluate the clinical value and efficacy of three-dimensional (3D) printing guide plate in the process of core decompression plus porous bioceramics rod for the treatment of early ONFH. METHODS: Forty patients were enrolled, including 20 patients undergoing the surgery with 3D printing guide plate in the experiment group and 20 controls with C-arm fluoroscopy. The following parameters such as surgery time, blood loss, fluoroscopy times, and the accuracy of core decompression for necrosis area, function outcome according to Harris Hip Score (HHS), and any possible complications were recorded and compared between the two groups. All the patients were followed up at 6, 12, and 18 months postoperatively. RESULTS: The surgery time, fluoroscopy time, and intraoperative blood loss in the experiment group was significantly less (P < 0.05) than those in the control group. There was no statistical significance in the accuracy of core decompression and porous bioceramics rod placement between the two groups (P > 0.05). All patients were followed up for 18 months. There was a significant difference between the preoperative and final follow-up HSS scores in both groups (P < 0.05). In addition, there was also a significant difference between the groups in the last follow-up HSS scores (P < 0.05). CONCLUSIONS: Compared with the traditional method, 3D printing guide plate could shorten the surgery time and fluoroscopy times and decrease intraoperative blood loss. It seems to be an effective method in the combined core decompression with porous bioceramics rod placement for early ONFH.