Cargando…
Rigorous optimisation of multilinear discriminant analysis with Tucker and PARAFAC structures
BACKGROUND: We propose rigorously optimised supervised feature extraction methods for multilinear data based on Multilinear Discriminant Analysis (MDA) and demonstrate their usage on Electroencephalography (EEG) and simulated data. While existing MDA methods use heuristic optimisation procedures bas...
Autores principales: | Frølich, Laura, Andersen, Tobias Søren, Mørup, Morten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977741/ https://www.ncbi.nlm.nih.gov/pubmed/29848301 http://dx.doi.org/10.1186/s12859-018-2188-0 |
Ejemplares similares
-
Factor Uniqueness of the Structural Parafac Model
por: Giordani, Paolo, et al.
Publicado: (2020) -
Dr. Joshua Tucker
Publicado: (1881) -
Dr. Joshua Tucker
Publicado: (1882) -
Luther Tucker and Son
Publicado: (1861) -
Multilinear algebra
por: Greub, Werner H
Publicado: (1978)