Cargando…
Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
Single-ion magnets (SIMs) are the smallest possible magnetic devices for potential applications in quantum computing and high-density information storage. Both, their addressing in surfaces and their organization in metal–organic frameworks (MOFs) are thus current challenges in molecular chemistry....
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977934/ https://www.ncbi.nlm.nih.gov/pubmed/29910918 http://dx.doi.org/10.1039/c5sc04461h |
_version_ | 1783327435433967616 |
---|---|
author | Vallejo, Julia Fortea-Pérez, Francisco R. Pardo, Emilio Benmansour, Samia Castro, Isabel Krzystek, J. Armentano, Donatella Cano, Joan |
author_facet | Vallejo, Julia Fortea-Pérez, Francisco R. Pardo, Emilio Benmansour, Samia Castro, Isabel Krzystek, J. Armentano, Donatella Cano, Joan |
author_sort | Vallejo, Julia |
collection | PubMed |
description | Single-ion magnets (SIMs) are the smallest possible magnetic devices for potential applications in quantum computing and high-density information storage. Both, their addressing in surfaces and their organization in metal–organic frameworks (MOFs) are thus current challenges in molecular chemistry. Here we report a two-dimensional 2D MOF with a square grid topology built from cobalt(ii) SIMs as nodes and long rod-like aromatic bipyridine ligands as linkers, and exhibiting large square channels capable to host a large number of different guest molecules. The organization of the cobalt(ii) nodes in the square layers improves the magnetic properties by minimizing the intermolecular interactions between the cobalt(ii) centres. Moreover, the SIM behaviour was found to be dependent on the nature of the aromatic guest molecules. The whole process could be followed by single-crystal X-ray diffraction, providing comprehensive evidence of the putative role of the solvent guest molecules that leave a “fingerprint” on the 2D structures and thus, on the cobalt environment. |
format | Online Article Text |
id | pubmed-5977934 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-59779342018-06-15 Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework Vallejo, Julia Fortea-Pérez, Francisco R. Pardo, Emilio Benmansour, Samia Castro, Isabel Krzystek, J. Armentano, Donatella Cano, Joan Chem Sci Chemistry Single-ion magnets (SIMs) are the smallest possible magnetic devices for potential applications in quantum computing and high-density information storage. Both, their addressing in surfaces and their organization in metal–organic frameworks (MOFs) are thus current challenges in molecular chemistry. Here we report a two-dimensional 2D MOF with a square grid topology built from cobalt(ii) SIMs as nodes and long rod-like aromatic bipyridine ligands as linkers, and exhibiting large square channels capable to host a large number of different guest molecules. The organization of the cobalt(ii) nodes in the square layers improves the magnetic properties by minimizing the intermolecular interactions between the cobalt(ii) centres. Moreover, the SIM behaviour was found to be dependent on the nature of the aromatic guest molecules. The whole process could be followed by single-crystal X-ray diffraction, providing comprehensive evidence of the putative role of the solvent guest molecules that leave a “fingerprint” on the 2D structures and thus, on the cobalt environment. Royal Society of Chemistry 2016-03-01 2015-12-10 /pmc/articles/PMC5977934/ /pubmed/29910918 http://dx.doi.org/10.1039/c5sc04461h Text en This journal is © The Royal Society of Chemistry 2016 http://creativecommons.org/licenses/by/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
spellingShingle | Chemistry Vallejo, Julia Fortea-Pérez, Francisco R. Pardo, Emilio Benmansour, Samia Castro, Isabel Krzystek, J. Armentano, Donatella Cano, Joan Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework |
title | Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
|
title_full | Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
|
title_fullStr | Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
|
title_full_unstemmed | Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
|
title_short | Guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework
|
title_sort | guest-dependent single-ion magnet behaviour in a cobalt(ii) metal–organic framework |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977934/ https://www.ncbi.nlm.nih.gov/pubmed/29910918 http://dx.doi.org/10.1039/c5sc04461h |
work_keys_str_mv | AT vallejojulia guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT forteaperezfranciscor guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT pardoemilio guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT benmansoursamia guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT castroisabel guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT krzystekj guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT armentanodonatella guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework AT canojoan guestdependentsingleionmagnetbehaviourinacobaltiimetalorganicframework |