Cargando…

Enhanced Strength of a Mechanical Alloyed NbMoTaWVTi Refractory High Entropy Alloy

A NbMoTaWVTi refractory high entropy alloy (HEA) has been successfully synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure and mechanical properties of this alloy are investigated. It is observed that only two types of body-centered cubic (BCC) solid solution...

Descripción completa

Detalles Bibliográficos
Autores principales: Long, Yan, Su, Kai, Zhang, Jinfu, Liang, Xiaobiao, Peng, Haiyan, Li, Xiaozhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978046/
https://www.ncbi.nlm.nih.gov/pubmed/29693626
http://dx.doi.org/10.3390/ma11050669
Descripción
Sumario:A NbMoTaWVTi refractory high entropy alloy (HEA) has been successfully synthesized by mechanical alloying (MA) and spark plasma sintering (SPS). The microstructure and mechanical properties of this alloy are investigated. It is observed that only two types of body-centered cubic (BCC) solid solutions are formed in the powders after ball milling for 40 h. However, a new face-centered cubic (FCC) precipitated phase is observed in the BCC matrix of bulk material consolidated by SPS. The FCC precipitated phase is identified as TiO, due to the introduction of O during the preparing process of HEA. The compressive yield strength, fracture strength, and total fracture strain of the consolidated bulk HEA are 2709 MPa, 3115 MPa, and 11.4%, respectively. The excellent mechanical properties can be attributed to solid solution strengthening and grain boundary strengthening of the fine-grained BCC matrix, as well as the precipitation strengthening owing to the formation of TiO particles.