Cargando…
In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium
Printing technologies have recently emerged in the development of novel drug delivery systems toward personalized medicine, to improve the performance of formulations, existing bioavailability patterns, and patients’ compliance. In the context of two-dimensional printing, this article presents the d...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978241/ https://www.ncbi.nlm.nih.gov/pubmed/29789468 http://dx.doi.org/10.3390/ma11050864 |
_version_ | 1783327500641763328 |
---|---|
author | Eleftheriadis, Georgios K. Monou, Paraskevi Kyriaki Bouropoulos, Nikolaos Fatouros, Dimitrios G. |
author_facet | Eleftheriadis, Georgios K. Monou, Paraskevi Kyriaki Bouropoulos, Nikolaos Fatouros, Dimitrios G. |
author_sort | Eleftheriadis, Georgios K. |
collection | PubMed |
description | Printing technologies have recently emerged in the development of novel drug delivery systems toward personalized medicine, to improve the performance of formulations, existing bioavailability patterns, and patients’ compliance. In the context of two-dimensional printing, this article presents the development of buccal films that are designed to efficiently deliver a class II compound (diclofenac sodium), according to the Biopharmaceutics Classification System (BCS), to the oral cavity. The preparation of drug-loaded inks was carried out based on solubility studies and evaluation of rheological properties, combining ethanol and propylene glycol as optimal solvents. Deposition of the drug was achieved by increasing the number of printing layers onto edible substrates, to produce formulations with dose variance. Thermal analysis, X-ray diffraction, and infrared spectroscopy were used to characterize the developed films. Drug loading and water uptake studies complemented the initial assessment of the films, and preliminary in vitro studies were conducted to further evaluate their performance. The in vitro release profiles were recorded in simulated saliva, presenting the complete release of the incorporated active in a period of 10 min. The effect of multiple layers on the overall performance of films was completed with in vitro permeation studies, revealing the correlation between the number of printed layers and the apparent permeability coefficient. |
format | Online Article Text |
id | pubmed-5978241 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-59782412018-05-31 In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium Eleftheriadis, Georgios K. Monou, Paraskevi Kyriaki Bouropoulos, Nikolaos Fatouros, Dimitrios G. Materials (Basel) Article Printing technologies have recently emerged in the development of novel drug delivery systems toward personalized medicine, to improve the performance of formulations, existing bioavailability patterns, and patients’ compliance. In the context of two-dimensional printing, this article presents the development of buccal films that are designed to efficiently deliver a class II compound (diclofenac sodium), according to the Biopharmaceutics Classification System (BCS), to the oral cavity. The preparation of drug-loaded inks was carried out based on solubility studies and evaluation of rheological properties, combining ethanol and propylene glycol as optimal solvents. Deposition of the drug was achieved by increasing the number of printing layers onto edible substrates, to produce formulations with dose variance. Thermal analysis, X-ray diffraction, and infrared spectroscopy were used to characterize the developed films. Drug loading and water uptake studies complemented the initial assessment of the films, and preliminary in vitro studies were conducted to further evaluate their performance. The in vitro release profiles were recorded in simulated saliva, presenting the complete release of the incorporated active in a period of 10 min. The effect of multiple layers on the overall performance of films was completed with in vitro permeation studies, revealing the correlation between the number of printed layers and the apparent permeability coefficient. MDPI 2018-05-22 /pmc/articles/PMC5978241/ /pubmed/29789468 http://dx.doi.org/10.3390/ma11050864 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Eleftheriadis, Georgios K. Monou, Paraskevi Kyriaki Bouropoulos, Nikolaos Fatouros, Dimitrios G. In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title | In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title_full | In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title_fullStr | In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title_full_unstemmed | In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title_short | In Vitro Evaluation of 2D-Printed Edible Films for the Buccal Delivery of Diclofenac Sodium |
title_sort | in vitro evaluation of 2d-printed edible films for the buccal delivery of diclofenac sodium |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978241/ https://www.ncbi.nlm.nih.gov/pubmed/29789468 http://dx.doi.org/10.3390/ma11050864 |
work_keys_str_mv | AT eleftheriadisgeorgiosk invitroevaluationof2dprintedediblefilmsforthebuccaldeliveryofdiclofenacsodium AT monouparaskevikyriaki invitroevaluationof2dprintedediblefilmsforthebuccaldeliveryofdiclofenacsodium AT bouropoulosnikolaos invitroevaluationof2dprintedediblefilmsforthebuccaldeliveryofdiclofenacsodium AT fatourosdimitriosg invitroevaluationof2dprintedediblefilmsforthebuccaldeliveryofdiclofenacsodium |