Cargando…
Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory
BACKGROUND: Working memory, as a complex system, consists of two independent components: manipulation and maintenance process, which are defined as executive control and storage process. Previous studies mainly focused on the overall effect of transcranial direct current stimulation (tDCS) on workin...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978386/ https://www.ncbi.nlm.nih.gov/pubmed/29868292 http://dx.doi.org/10.7717/peerj.4906 |
_version_ | 1783327522218311680 |
---|---|
author | Wang, Jiarui Tian, Jinhua Hao, Renning Tian, Lili Liu, Qiang |
author_facet | Wang, Jiarui Tian, Jinhua Hao, Renning Tian, Lili Liu, Qiang |
author_sort | Wang, Jiarui |
collection | PubMed |
description | BACKGROUND: Working memory, as a complex system, consists of two independent components: manipulation and maintenance process, which are defined as executive control and storage process. Previous studies mainly focused on the overall effect of transcranial direct current stimulation (tDCS) on working memory. However, little has been known about the segregative effects of tDCS on the sub-processes within working memory. METHOD: Transcranial direct current stimulation, as one of the non-invasive brain stimulation techniques, is being widely used to modulate the cortical activation of local brain areas. This study modified a spatial n-back experiment with anodal and cathodal tDCS exertion on the right dorsolateral prefrontal cortex (DLPFC), aiming to investigate the effects of tDCS on the two sub-processes of working memory: manipulation (updating) and maintenance. Meanwhile, considering the separability of tDCS effects, we further reconfirmed the causal relationship between the right DLPFC and the sub-processes of working memory with different tDCS conditions. RESULTS: The present study showed that cathodal tDCS on the right DLPFC selectively improved the performance of the modified 2-back task in the difficult condition, whereas anodal tDCS significantly reduced the performance of subjects and showed an speeding-up tendency of response time. More precisely, the results of discriminability index and criterion showed that only cathodal tDCS enhanced the performance of maintenance in the difficult condition. Neither of the two tDCS conditions affected the performance of manipulation (updating). CONCLUSION: These findings provide evidence that cathodal tDCS of the right DLPFC selectively affects maintenance capacity. Besides, cathodal tDCS also serves as an interference suppressor to reduce the irrelevant interference, thereby indirectly improving the working memory capacity. Moreover, the right DLPFC is not the unique brain regions for working memory manipulation (updating). |
format | Online Article Text |
id | pubmed-5978386 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-59783862018-06-04 Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory Wang, Jiarui Tian, Jinhua Hao, Renning Tian, Lili Liu, Qiang PeerJ Psychiatry and Psychology BACKGROUND: Working memory, as a complex system, consists of two independent components: manipulation and maintenance process, which are defined as executive control and storage process. Previous studies mainly focused on the overall effect of transcranial direct current stimulation (tDCS) on working memory. However, little has been known about the segregative effects of tDCS on the sub-processes within working memory. METHOD: Transcranial direct current stimulation, as one of the non-invasive brain stimulation techniques, is being widely used to modulate the cortical activation of local brain areas. This study modified a spatial n-back experiment with anodal and cathodal tDCS exertion on the right dorsolateral prefrontal cortex (DLPFC), aiming to investigate the effects of tDCS on the two sub-processes of working memory: manipulation (updating) and maintenance. Meanwhile, considering the separability of tDCS effects, we further reconfirmed the causal relationship between the right DLPFC and the sub-processes of working memory with different tDCS conditions. RESULTS: The present study showed that cathodal tDCS on the right DLPFC selectively improved the performance of the modified 2-back task in the difficult condition, whereas anodal tDCS significantly reduced the performance of subjects and showed an speeding-up tendency of response time. More precisely, the results of discriminability index and criterion showed that only cathodal tDCS enhanced the performance of maintenance in the difficult condition. Neither of the two tDCS conditions affected the performance of manipulation (updating). CONCLUSION: These findings provide evidence that cathodal tDCS of the right DLPFC selectively affects maintenance capacity. Besides, cathodal tDCS also serves as an interference suppressor to reduce the irrelevant interference, thereby indirectly improving the working memory capacity. Moreover, the right DLPFC is not the unique brain regions for working memory manipulation (updating). PeerJ Inc. 2018-05-28 /pmc/articles/PMC5978386/ /pubmed/29868292 http://dx.doi.org/10.7717/peerj.4906 Text en © 2018 Wang et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Psychiatry and Psychology Wang, Jiarui Tian, Jinhua Hao, Renning Tian, Lili Liu, Qiang Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title | Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title_full | Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title_fullStr | Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title_full_unstemmed | Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title_short | Transcranial direct current stimulation over the right DLPFC selectively modulates subprocesses in working memory |
title_sort | transcranial direct current stimulation over the right dlpfc selectively modulates subprocesses in working memory |
topic | Psychiatry and Psychology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5978386/ https://www.ncbi.nlm.nih.gov/pubmed/29868292 http://dx.doi.org/10.7717/peerj.4906 |
work_keys_str_mv | AT wangjiarui transcranialdirectcurrentstimulationovertherightdlpfcselectivelymodulatessubprocessesinworkingmemory AT tianjinhua transcranialdirectcurrentstimulationovertherightdlpfcselectivelymodulatessubprocessesinworkingmemory AT haorenning transcranialdirectcurrentstimulationovertherightdlpfcselectivelymodulatessubprocessesinworkingmemory AT tianlili transcranialdirectcurrentstimulationovertherightdlpfcselectivelymodulatessubprocessesinworkingmemory AT liuqiang transcranialdirectcurrentstimulationovertherightdlpfcselectivelymodulatessubprocessesinworkingmemory |